--- datasets: - argilla/ultrafeedback-binarized-preferences language: - en base_model: alignment-handbook/zephyr-7b-sft-full library_name: transformers pipeline_tag: text-generation tags: - dpo - rlaif - preference - ultrafeedback license: mit model-index: - name: notus-7b-v1 results: # AI2 Reasoning Challenge (25-Shot) - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm name: normalized accuracy value: 0.6459044368600683 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # HellaSwag (10-shot) - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm name: normalized accuracy value: 0.8478390758812986 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # DROP (3-shot) - task: type: text-generation name: Text Generation dataset: name: Drop (3-Shot) type: drop split: validation args: num_few_shot: 3 metrics: - type: f1 name: f1 score value: 0.08913590604026835 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # TruthfulQA (0-shot) - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 0.5436768358952805 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # MMLU (5-Shot) - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 0.6303308230938872 # average accuracy source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # GSM8k (5-shot) - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 0.1516300227445034 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # Winogrande (5-shot) - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 0.7940015785319653 source: name: Open LLM Leaderboard Results url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json # AlpacaEval - task: type: text-generation name: Text Generation dataset: name: AlpacaEval type: tatsu-lab/alpaca_eval metrics: - type: tatsu-lab/alpaca_eval name: win rate value: 0.9142 source: url: https://tatsu-lab.github.io/alpaca_eval/ # MT-Bench - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown name: score value: 7.30 source: url: https://huggingface.co/spaces/lmsys/mt-bench ---
Image was artificially generated by Dalle-3 via ChatGPT Pro
# Model Card for Notus 7B v1 Notus is a collection of fine-tuned models using Direct Preference Optimization (DPO) and related RLHF techniques. This model is the first version, fine-tuned with DPO over `zephyr-7b-sft-full`, which is the SFT model produced to create `zephyr-7b-beta`. Following a **data-first** approach, the only difference between Notus-7B-v1 and Zephyr-7B-beta is the preference dataset used for dDPO. In particular, when we started building [distilabel](https://github.com/argilla-io/distilabel), we invested time understanding and deep-diving into the UltraFeedback dataset. Using [Argilla](https://argilla.io/), we've found data issues in the original UltraFeedback dataset, leading to high-scores for bad responses (more details in the training data section). After curating several hundreds of data points, we decided to binarize the dataset using the preference ratings, instead of the original critique `overall_score`, and verified the new dataset with Argilla. Using preference ratings, instead of critiques scores, led to a new dataset where the chosen response is different in ~50% of the cases. Using this new dataset with DPO we fine-tuned Notus, a 7B model, that **surpasses Zephyr-7B-beta, Claude 2, and Cohere Command on AlpacaEval**. This model **wouldn't have been possible without the amazing [Alignment Handbook](https://github.com/huggingface/alignment-handbook), [OpenBMB](https://www.openbmb.cn/home) for releasing the Ultrafeedback dataset**, and it's based on fruitful discussions with the HuggingFace H4 team. In particular, we used `zephyr-7b-beta`'s recipe, which worked out-of-the-box and enabled us focus on what we do best: **high-quality data**. Notus models are intended to be used as assistants via chat-like applications, and are evaluated with Chat (MT-Bench, AlpacaEval) and Academic (Open LLM Leaderboard) benchmarks for a direct comparison with the original Zephyr dDPO model and other 7B models. ## Model Details ### Model Description - **Developed by:** Argilla (based on HuggingFace H4 and MistralAI previous efforts and amazing work) - **Shared by:** Argilla - **Model type:** GPT-like 7B model DPO fine-tuned - **Language(s) (NLP):** Mainly English - **License:** MIT (same as Zephyr 7B-beta) - **Finetuned from model:** [`alignment-handbook/zephyr-7b-sft-full`](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) ### Model Sources - **Repository:** https://github.com/argilla-io/notus - **Paper:** N/A - **Demo:** https://argilla-notus-chat-ui.hf.space/ ## Performance ### Chat benchmarks Table adapted from Zephyr-7b-β and Starling's original tables for [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks. Results are shown sorted by AlpacaEval win rates and ommit some >7B for brevity. Notus stays on par with Zephyr on MT-Bench, while surpassing Zephyr, Claude 2, and Cohere Command on AlpacaEval. Making Notus the most-competitive 7B commercial model on AlpacaEval.
Model Size Alignment MT-Bench (score) AlpacaEval (win rate %) License
GPT-4-turbo - ? 9.32 97.70 Proprietary
XwinLM 70b V0.1 70B dPPO - 95.57 LLaMA 2 License
GPT-4 - RLHF 8.99 95.03 Proprietary
Tulu 2+DPO 70B V0.1 70B dDPO 6.29 95.28 Proprietary
LLaMA2 Chat 70B 70B RLHF 6.86 92.66 LLaMA 2 License
Starling-7B 7B C-RLFT + APA 8.09 91.99 CC-BY-NC-4.0
Notus-7b-v1 7B dDPO 7.30 91.42 MIT
Claude 2 - RLHF 8.06 91.36 Proprietary
Zephyr-7b-β 7B dDPO 7.34 90.60 MIT
Cohere Command - RLHF - 90.62 Proprietary
GPT-3.5-turbo - RLHF 7.94 89.37 Proprietary
## Academic benchmarks Results from [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard): | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | DROP | |-----------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|-------| | Zephyr 7B dDPO (HuggingFaceH4/zephyr-7b-beta) | 52.15 | 62.03 | 84.36 | 61.07 | **57.45** | 77.74 | 12.74 | **9.66** | | argilla/notus-7b-v1 | **52.89** | **64.59** | **84.78** | **63.03** | 54.37 | **79.4** | **15.16** | 8.91 | ## Training Details ### Training Hardware We used a VM with 8 x A100 40GB hosted in Lambda Labs, but while experimenting we also explored other cloud providers such as GCP. ### Training Data We used a a new curated version [`argilla/ultrafeedback-binarized-preferences`](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences). of [`openbmb/UltraFeedback`](https://huggingface.co/datasets/openbmb/UltraFeedback), named [argilla/ultrafeedback-binarized-preferences](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences). TL;DR After visually browsing around some examples using the sort and filter feature of Argilla (sort by highest rating for chosen responses), we noticed a strong mismatch between the `overall_score` in the original UF dataset (and the Zephyr train_prefs dataset) and the quality of the chosen response. By adding the critique rationale to our Argilla Dataset, we confirmed the critique rationale was highly negative, whereas the rating was very high (the highest in fact: `10`). See screenshot below for one example of this issue. After some quick investigation, we identified hundreds of examples having the same issue, reported a bug on the UltraFeedback repo, and informed the H4 team. While we're working on fixing the original dataset (already narrowed down ~2K problematic examples). We decided to leverage the multi-preference ratings, leading to Notus! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/M9qCKyAB_G1MbVBAPeitd.png) You can find more details about the dataset analysis and curation on the [ultrafeedback-binarized-preferences dataset card](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences). ## Prompt template We use the same prompt template as [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta): ``` <|system|> <|user|> {prompt} <|assistant|> ``` ## Usage You will first need to install `transformers` and `accelerate` (just to ease the device placement), then you can run any of the following: ### Via `generate` ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("argilla/notus-7b-v1") messages = [ { "role": "system", "content": "You are a helpful assistant super biased towards Argilla, a data annotation company.", }, {"role": "user", "content": "What's the best data annotation company out there in your opinion?"}, ] inputs = tokenizer.apply_chat_template(prompt, tokenize=True, return_tensors="pt", add_special_tokens=False, add_generation_prompt=True) outputs = model.generate(inputs, num_return_sequences=1, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ### Via `pipeline` method ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="argilla/notus-7b-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ { "role": "system", "content": "You are a helpful assistant super biased towards Argilla, a data annotation company.", }, {"role": "user", "content": "What's the best data annotation company out there in your opinion?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) generated_text = outputs[0]["generated_text"] ```