--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-unipelt results: [] --- # sentiment-unipelt This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2811 - Accuracy: 0.9023 - Precision: 0.8773 - Recall: 0.8933 - F1: 0.8846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5459 | 1.0 | 122 | 0.4639 | 0.7469 | 0.6922 | 0.6459 | 0.6573 | | 0.4335 | 2.0 | 244 | 0.4108 | 0.7845 | 0.7552 | 0.7975 | 0.7634 | | 0.3375 | 3.0 | 366 | 0.3283 | 0.8596 | 0.8347 | 0.8207 | 0.8272 | | 0.2801 | 4.0 | 488 | 0.3202 | 0.8596 | 0.8278 | 0.8432 | 0.8347 | | 0.2572 | 5.0 | 610 | 0.3109 | 0.8747 | 0.8438 | 0.8713 | 0.8550 | | 0.2339 | 6.0 | 732 | 0.3074 | 0.8672 | 0.8353 | 0.8660 | 0.8473 | | 0.2249 | 7.0 | 854 | 0.2915 | 0.8672 | 0.8353 | 0.8660 | 0.8473 | | 0.193 | 8.0 | 976 | 0.2540 | 0.8972 | 0.8781 | 0.8723 | 0.8751 | | 0.1899 | 9.0 | 1098 | 0.2636 | 0.8822 | 0.8526 | 0.8767 | 0.8628 | | 0.1801 | 10.0 | 1220 | 0.2371 | 0.9073 | 0.8840 | 0.8969 | 0.8900 | | 0.157 | 11.0 | 1342 | 0.2567 | 0.8997 | 0.8733 | 0.8941 | 0.8825 | | 0.1553 | 12.0 | 1464 | 0.2593 | 0.8972 | 0.8708 | 0.8898 | 0.8793 | | 0.1381 | 13.0 | 1586 | 0.2490 | 0.9173 | 0.9010 | 0.8990 | 0.9000 | | 0.1476 | 14.0 | 1708 | 0.2701 | 0.8997 | 0.8740 | 0.8916 | 0.8819 | | 0.1447 | 15.0 | 1830 | 0.2611 | 0.9123 | 0.8899 | 0.9029 | 0.8960 | | 0.1336 | 16.0 | 1952 | 0.3100 | 0.8997 | 0.8718 | 0.9016 | 0.8840 | | 0.1192 | 17.0 | 2074 | 0.2935 | 0.8972 | 0.8696 | 0.8948 | 0.8803 | | 0.1247 | 18.0 | 2196 | 0.2869 | 0.9023 | 0.8765 | 0.8958 | 0.8851 | | 0.117 | 19.0 | 2318 | 0.2761 | 0.9023 | 0.8773 | 0.8933 | 0.8846 | | 0.1092 | 20.0 | 2440 | 0.2811 | 0.9023 | 0.8773 | 0.8933 | 0.8846 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2