--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r8a2d0.1-0 results: [] --- # sentiment-lora-r8a2d0.1-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3309 - Accuracy: 0.8672 - Precision: 0.8378 - Recall: 0.8460 - F1: 0.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5622 | 1.0 | 122 | 0.5076 | 0.7193 | 0.6565 | 0.6464 | 0.6505 | | 0.5003 | 2.0 | 244 | 0.4839 | 0.7469 | 0.7107 | 0.7409 | 0.7178 | | 0.4614 | 3.0 | 366 | 0.4256 | 0.7719 | 0.7281 | 0.7436 | 0.7344 | | 0.4022 | 4.0 | 488 | 0.3880 | 0.8170 | 0.7798 | 0.7756 | 0.7776 | | 0.3678 | 5.0 | 610 | 0.4131 | 0.8020 | 0.7657 | 0.7974 | 0.7760 | | 0.3376 | 6.0 | 732 | 0.3645 | 0.8321 | 0.7965 | 0.8037 | 0.7999 | | 0.3268 | 7.0 | 854 | 0.3640 | 0.8346 | 0.7988 | 0.8180 | 0.8069 | | 0.3044 | 8.0 | 976 | 0.3551 | 0.8346 | 0.7996 | 0.8055 | 0.8024 | | 0.2984 | 9.0 | 1098 | 0.3509 | 0.8496 | 0.8169 | 0.8261 | 0.8212 | | 0.2922 | 10.0 | 1220 | 0.3413 | 0.8521 | 0.8213 | 0.8229 | 0.8221 | | 0.2666 | 11.0 | 1342 | 0.3494 | 0.8521 | 0.8193 | 0.8329 | 0.8254 | | 0.2641 | 12.0 | 1464 | 0.3520 | 0.8546 | 0.8220 | 0.8372 | 0.8288 | | 0.2694 | 13.0 | 1586 | 0.3358 | 0.8496 | 0.8202 | 0.8136 | 0.8167 | | 0.2678 | 14.0 | 1708 | 0.3355 | 0.8647 | 0.8352 | 0.8417 | 0.8383 | | 0.255 | 15.0 | 1830 | 0.3406 | 0.8647 | 0.8346 | 0.8442 | 0.8391 | | 0.2482 | 16.0 | 1952 | 0.3370 | 0.8622 | 0.8309 | 0.8450 | 0.8373 | | 0.2444 | 17.0 | 2074 | 0.3272 | 0.8697 | 0.8411 | 0.8478 | 0.8443 | | 0.2521 | 18.0 | 2196 | 0.3319 | 0.8622 | 0.8314 | 0.8425 | 0.8365 | | 0.2456 | 19.0 | 2318 | 0.3293 | 0.8697 | 0.8411 | 0.8478 | 0.8443 | | 0.2458 | 20.0 | 2440 | 0.3309 | 0.8672 | 0.8378 | 0.8460 | 0.8417 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2