--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r8a1d0.2-0 results: [] --- # sentiment-lora-r8a1d0.2-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3274 - Accuracy: 0.8622 - Precision: 0.8319 - Recall: 0.8400 - F1: 0.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5608 | 1.0 | 122 | 0.5057 | 0.7218 | 0.6593 | 0.6482 | 0.6527 | | 0.5012 | 2.0 | 244 | 0.4792 | 0.7519 | 0.7117 | 0.7370 | 0.7193 | | 0.4628 | 3.0 | 366 | 0.4281 | 0.7694 | 0.7256 | 0.7419 | 0.7321 | | 0.4045 | 4.0 | 488 | 0.3951 | 0.8170 | 0.7803 | 0.7730 | 0.7765 | | 0.3701 | 5.0 | 610 | 0.4239 | 0.7995 | 0.7633 | 0.7956 | 0.7736 | | 0.3362 | 6.0 | 732 | 0.3721 | 0.8296 | 0.7934 | 0.8019 | 0.7974 | | 0.3285 | 7.0 | 854 | 0.3725 | 0.8346 | 0.7989 | 0.8205 | 0.8078 | | 0.3061 | 8.0 | 976 | 0.3537 | 0.8421 | 0.8087 | 0.8133 | 0.8109 | | 0.3017 | 9.0 | 1098 | 0.3504 | 0.8421 | 0.8087 | 0.8133 | 0.8109 | | 0.2942 | 10.0 | 1220 | 0.3391 | 0.8496 | 0.8186 | 0.8186 | 0.8186 | | 0.2715 | 11.0 | 1342 | 0.3456 | 0.8496 | 0.8169 | 0.8261 | 0.8212 | | 0.2703 | 12.0 | 1464 | 0.3534 | 0.8521 | 0.8190 | 0.8354 | 0.8262 | | 0.2759 | 13.0 | 1586 | 0.3326 | 0.8521 | 0.8228 | 0.8179 | 0.8203 | | 0.2705 | 14.0 | 1708 | 0.3360 | 0.8571 | 0.8266 | 0.8314 | 0.8289 | | 0.2576 | 15.0 | 1830 | 0.3423 | 0.8647 | 0.8340 | 0.8467 | 0.8399 | | 0.2513 | 16.0 | 1952 | 0.3394 | 0.8571 | 0.8251 | 0.8389 | 0.8314 | | 0.2481 | 17.0 | 2074 | 0.3261 | 0.8571 | 0.8273 | 0.8289 | 0.8281 | | 0.2561 | 18.0 | 2196 | 0.3320 | 0.8622 | 0.8314 | 0.8425 | 0.8365 | | 0.2478 | 19.0 | 2318 | 0.3269 | 0.8622 | 0.8326 | 0.8375 | 0.8349 | | 0.2451 | 20.0 | 2440 | 0.3274 | 0.8622 | 0.8319 | 0.8400 | 0.8357 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2