--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r8 results: [] --- # sentiment-lora-r8 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2786 - Accuracy: 0.8847 - Precision: 0.8648 - Recall: 0.8534 - F1: 0.8588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5623 | 1.0 | 122 | 0.5217 | 0.7268 | 0.6604 | 0.6217 | 0.6301 | | 0.5061 | 2.0 | 244 | 0.4898 | 0.7569 | 0.7074 | 0.7105 | 0.7089 | | 0.4443 | 3.0 | 366 | 0.4085 | 0.8120 | 0.7751 | 0.7620 | 0.7679 | | 0.3805 | 4.0 | 488 | 0.3672 | 0.8246 | 0.7980 | 0.7609 | 0.7752 | | 0.3488 | 5.0 | 610 | 0.3535 | 0.8521 | 0.8207 | 0.8254 | 0.8229 | | 0.3156 | 6.0 | 732 | 0.3337 | 0.8571 | 0.8299 | 0.8214 | 0.8255 | | 0.3055 | 7.0 | 854 | 0.3217 | 0.8622 | 0.8385 | 0.8225 | 0.8298 | | 0.2995 | 8.0 | 976 | 0.3145 | 0.8596 | 0.8347 | 0.8207 | 0.8272 | | 0.2825 | 9.0 | 1098 | 0.3090 | 0.8672 | 0.8402 | 0.8385 | 0.8394 | | 0.272 | 10.0 | 1220 | 0.2992 | 0.8722 | 0.8453 | 0.8471 | 0.8462 | | 0.2626 | 11.0 | 1342 | 0.3008 | 0.8747 | 0.8568 | 0.8338 | 0.8440 | | 0.2641 | 12.0 | 1464 | 0.2949 | 0.8747 | 0.8488 | 0.8488 | 0.8488 | | 0.257 | 13.0 | 1586 | 0.2885 | 0.8772 | 0.8592 | 0.8381 | 0.8475 | | 0.2473 | 14.0 | 1708 | 0.2826 | 0.8822 | 0.8596 | 0.8542 | 0.8568 | | 0.2456 | 15.0 | 1830 | 0.2826 | 0.8847 | 0.8609 | 0.8609 | 0.8609 | | 0.2477 | 16.0 | 1952 | 0.2795 | 0.8847 | 0.8621 | 0.8584 | 0.8602 | | 0.2426 | 17.0 | 2074 | 0.2794 | 0.8797 | 0.8585 | 0.8474 | 0.8526 | | 0.2359 | 18.0 | 2196 | 0.2796 | 0.8872 | 0.8658 | 0.8602 | 0.8629 | | 0.2417 | 19.0 | 2318 | 0.2787 | 0.8847 | 0.8648 | 0.8534 | 0.8588 | | 0.2319 | 20.0 | 2440 | 0.2786 | 0.8847 | 0.8648 | 0.8534 | 0.8588 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2