--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r16a0d0.2-0 results: [] --- # sentiment-lora-r16a0d0.2-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2895 - Accuracy: 0.8647 - Precision: 0.8352 - Recall: 0.8417 - F1: 0.8383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5604 | 1.0 | 122 | 0.4996 | 0.7268 | 0.6671 | 0.6592 | 0.6627 | | 0.4842 | 2.0 | 244 | 0.4520 | 0.7544 | 0.7169 | 0.7462 | 0.7247 | | 0.4079 | 3.0 | 366 | 0.3749 | 0.8321 | 0.7963 | 0.8062 | 0.8009 | | 0.3378 | 4.0 | 488 | 0.3624 | 0.8471 | 0.8184 | 0.8068 | 0.8122 | | 0.3146 | 5.0 | 610 | 0.3620 | 0.8471 | 0.8130 | 0.8393 | 0.8235 | | 0.2935 | 6.0 | 732 | 0.3518 | 0.8496 | 0.8158 | 0.8386 | 0.8253 | | 0.2842 | 7.0 | 854 | 0.3307 | 0.8647 | 0.8346 | 0.8442 | 0.8391 | | 0.267 | 8.0 | 976 | 0.3191 | 0.8622 | 0.8333 | 0.8350 | 0.8341 | | 0.2598 | 9.0 | 1098 | 0.3174 | 0.8672 | 0.8393 | 0.8410 | 0.8402 | | 0.2557 | 10.0 | 1220 | 0.3076 | 0.8647 | 0.8367 | 0.8367 | 0.8367 | | 0.2341 | 11.0 | 1342 | 0.3144 | 0.8697 | 0.8411 | 0.8478 | 0.8443 | | 0.2352 | 12.0 | 1464 | 0.3135 | 0.8672 | 0.8385 | 0.8435 | 0.8409 | | 0.2335 | 13.0 | 1586 | 0.3035 | 0.8722 | 0.8445 | 0.8496 | 0.8470 | | 0.232 | 14.0 | 1708 | 0.3012 | 0.8697 | 0.8404 | 0.8503 | 0.8451 | | 0.221 | 15.0 | 1830 | 0.3050 | 0.8672 | 0.8372 | 0.8485 | 0.8425 | | 0.216 | 16.0 | 1952 | 0.3016 | 0.8697 | 0.8399 | 0.8528 | 0.8458 | | 0.2096 | 17.0 | 2074 | 0.2881 | 0.8697 | 0.8419 | 0.8453 | 0.8436 | | 0.2184 | 18.0 | 2196 | 0.2966 | 0.8697 | 0.8393 | 0.8553 | 0.8465 | | 0.2134 | 19.0 | 2318 | 0.2884 | 0.8672 | 0.8385 | 0.8435 | 0.8409 | | 0.2077 | 20.0 | 2440 | 0.2895 | 0.8647 | 0.8352 | 0.8417 | 0.8383 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2