--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r16-0 results: [] --- # sentiment-lora-r16-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3046 - Accuracy: 0.8672 - Precision: 0.8385 - Recall: 0.8435 - F1: 0.8409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5577 | 1.0 | 122 | 0.4974 | 0.7168 | 0.6466 | 0.6196 | 0.6267 | | 0.4834 | 2.0 | 244 | 0.4640 | 0.7569 | 0.7260 | 0.7630 | 0.7327 | | 0.4095 | 3.0 | 366 | 0.3775 | 0.8296 | 0.7937 | 0.7994 | 0.7964 | | 0.339 | 4.0 | 488 | 0.3585 | 0.8446 | 0.8120 | 0.8151 | 0.8135 | | 0.3189 | 5.0 | 610 | 0.3868 | 0.8296 | 0.7951 | 0.8294 | 0.8068 | | 0.2953 | 6.0 | 732 | 0.3580 | 0.8496 | 0.8158 | 0.8436 | 0.8267 | | 0.2737 | 7.0 | 854 | 0.3384 | 0.8571 | 0.8260 | 0.8339 | 0.8298 | | 0.2691 | 8.0 | 976 | 0.3253 | 0.8647 | 0.8472 | 0.8167 | 0.8296 | | 0.2496 | 9.0 | 1098 | 0.3504 | 0.8596 | 0.8278 | 0.8432 | 0.8347 | | 0.2457 | 10.0 | 1220 | 0.3211 | 0.8596 | 0.8316 | 0.8282 | 0.8298 | | 0.2386 | 11.0 | 1342 | 0.3201 | 0.8647 | 0.8387 | 0.8317 | 0.8351 | | 0.2377 | 12.0 | 1464 | 0.3218 | 0.8672 | 0.8378 | 0.8460 | 0.8417 | | 0.2277 | 13.0 | 1586 | 0.3138 | 0.8672 | 0.8393 | 0.8410 | 0.8402 | | 0.2276 | 14.0 | 1708 | 0.3163 | 0.8647 | 0.8352 | 0.8417 | 0.8383 | | 0.2271 | 15.0 | 1830 | 0.3158 | 0.8697 | 0.8399 | 0.8528 | 0.8458 | | 0.2086 | 16.0 | 1952 | 0.3202 | 0.8647 | 0.8332 | 0.8517 | 0.8413 | | 0.2151 | 17.0 | 2074 | 0.3024 | 0.8747 | 0.8510 | 0.8438 | 0.8473 | | 0.2206 | 18.0 | 2196 | 0.3133 | 0.8672 | 0.8363 | 0.8535 | 0.8439 | | 0.2044 | 19.0 | 2318 | 0.3063 | 0.8672 | 0.8378 | 0.8460 | 0.8417 | | 0.2074 | 20.0 | 2440 | 0.3046 | 0.8672 | 0.8385 | 0.8435 | 0.8409 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2