--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer model-index: - name: nerui-base-0 results: [] --- # nerui-base-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0540 - Location Precision: 0.8544 - Location Recall: 0.9362 - Location F1: 0.8934 - Location Number: 94 - Organization Precision: 0.9119 - Organization Recall: 0.8683 - Organization F1: 0.8896 - Organization Number: 167 - Person Precision: 0.9926 - Person Recall: 0.9781 - Person F1: 0.9853 - Person Number: 137 - Overall Precision: 0.9244 - Overall Recall: 0.9221 - Overall F1: 0.9233 - Overall Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2529 | 1.0 | 96 | 0.0478 | 0.9438 | 0.8936 | 0.9180 | 94 | 0.8556 | 0.9222 | 0.8876 | 167 | 0.9776 | 0.9562 | 0.9668 | 137 | 0.9156 | 0.9271 | 0.9213 | 0.9851 | | 0.0617 | 2.0 | 192 | 0.0545 | 0.87 | 0.9255 | 0.8969 | 94 | 0.88 | 0.9222 | 0.9006 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.9036 | 0.9422 | 0.9225 | 0.9815 | | 0.0309 | 3.0 | 288 | 0.0539 | 0.8447 | 0.9255 | 0.8832 | 94 | 0.8868 | 0.8443 | 0.8650 | 167 | 0.9708 | 0.9708 | 0.9708 | 137 | 0.9048 | 0.9070 | 0.9059 | 0.9829 | | 0.0178 | 4.0 | 384 | 0.0556 | 0.8878 | 0.9255 | 0.9062 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9233 | 0.9372 | 0.9302 | 0.9845 | | 0.0103 | 5.0 | 480 | 0.0540 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.9119 | 0.8683 | 0.8896 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9244 | 0.9221 | 0.9233 | 0.9851 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2