--- base_model: meta-llama/Llama-2-70b-hf tags: - generated_from_trainer model-index: - name: qlora-llama70-ft-full-dataset results: [] library_name: peft --- # qlora-llama70-ft-full-dataset This model is a fine-tuned version of [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0025 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.5.0 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.1 - Tokenizers 0.15.0