--- language: en tags: - azbert - pretraining - fill-mask widget: - text: "Determine the [MASK] of $f$ $($ $x$ [MASK] $equal$ $x$ $plus$ $root$ ${$ $4$ $minus$ $x$ $supscript$ $2$ $}$ without [MASK]" example_title: "mathy" - text: "Solve $y$ $prime$ [MASK] $minus$ $4$ $y$ $prime$ $plus$ $4$ $y$ [MASK] $x$ $e$ $supscript$ $x$" example_title: "mathy" - text: "$f$ $($ $x$ [MASK] $y$ $)$" example_title: "mathy" - text: "$x$ [MASK] $x$ $equal$ $2$ $x$" example_title: "mathy" - text: "With Euler's [MASK], it [MASK] to $int$ $subscript$ $0$ [MASK] [MASK] $frac$ ${$ $1$ $plus$ $x$ $supscript$ $2$ $}$ ${$ $1$ $plus$ $x$ $}$ $d$ $x$" example_title: "mathy" - text: "Proof by [MASK] that $n$ [MASK] $gt$ $3$ $n$ [MASK] $n$ [MASK] $6$" example_title: "mathy" - text: "The goal of life is [MASK]." example_title: "philosophical" license: mit --- ## About Here we share a pretrained BERT model that is aware of math tokens. The math tokens are treated specially and tokenized using [pya0](https://github.com/approach0/pya0), which adds very limited new tokens for latex markup (total vocabulary is just 31,061). This model is trained on 4 x 2 Tesla V100 with a total batch size of 64, using Math StackExchange data with 2.7 million sentence pairs trained for 7 epochs. ### Usage Download and try it out ```sh pip install pya0==0.3.2 wget https://vault.cs.uwaterloo.ca/s/gqstFZmWHCLGXe3/download -O ckpt.tar.gz mkdir -p ckpt tar xzf ckpt.tar.gz -C ckpt --strip-components=1 python test.py --test_file test.txt ``` ### Test file format Modify the test examples in `test.txt` to play with it. The test file is tab-separated, the first column is additional positions you want to mask for the right-side sentence (useful for masking tokens in math markups). A zero means no additional mask positions. ### Example output ![](https://i.imgur.com/xpl87KO.png) ### Upload to huggingface This repo is hosted on [Github](https://github.com/approach0/azbert), and only mirrored at [huggingface](https://huggingface.co/castorini/azbert-base). To upload to huggingface, use the `upload2hgf.sh` script. Before runnig this script, be sure to check: * check points for model and tokenizer are created under `./ckpt` folder * model contains all the files needed: `config.json` and `pytorch_model.bin` * tokenizer contains all the files needed: `added_tokens.json`, `special_tokens_map.json`, `tokenizer_config.json`, `vocab.txt` and `tokenizer.json` * no `tokenizer_file` field in `tokenizer_config.json` (sometimes it is located locally at `~/.cache`) * `git-lfs` is installed * having git-remote named `hgf` reference to `https://huggingface.co/castorini/azbert-base`