---
license: other
license_name: apple-ascl
license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data
library_name: mobileclip
---
# MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
MobileCLIP was introduced in [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
](https://arxiv.org/pdf/2311.17049.pdf) (CVPR 2024), by Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel.
This repository contains the **MobileCLIP-S2** checkpoint.
![MobileCLIP Performance Figure](fig_accuracy_latency.png)
### Highlights
* Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller.
* `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples.
* `MobileCLIP-B`(LT) attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020).
## Checkpoints
| Model | # Seen
Samples (B) | # Params (M)
(img + txt) | Latency (ms)
(img + txt) | IN-1k Zero-Shot
Top-1 Acc. (%) | Avg. Perf. (%)
on 38 datasets |
|:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:|
| [MobileCLIP-S0](https://hf.co/pcuenq/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 |
| [MobileCLIP-S1](https://hf.co/pcuenq/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 |
| [MobileCLIP-S2](https://hf.co/pcuenq/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 |
| [MobileCLIP-B](https://hf.co/pcuenq/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 |
| [MobileCLIP-B (LT)](https://hf.co/pcuenq/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 |
## How to Use
First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint.
For programmatic downloading, if you have `huggingface_hub` installed, you can also run:
```
huggingface-cli download pcuenq/MobileCLIP-S2
```
Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip).
You can run inference with a code snippet like the following:
```py
import torch
from PIL import Image
import mobileclip
model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s2', pretrained='/path/to/mobileclip_s2.pt')
tokenizer = mobileclip.get_tokenizer('mobileclip_s2')
image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```