--- license: gemma library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-2b datasets: - generator model-index: - name: gemma-dolly-agriculture results: [] --- # gemma-dolly-agriculture This model is based on [google/gemma-2b](https://huggingface.co/google/gemma-2b), fine tuned with the dolly-qa dataset and some specific examples of agricultural disease descriptions. It achieves the following results on the evaluation set: - Loss: 2.0198 ## How to Run Inference Make sure you have git-lfs, and access to gemma-2b on huggingface. ``` git clone https://huggingface.co/apfurman/gemma-dolly-agriculture cd gemma-dolly-agriculture/ python3 run.py cpu Prompt ``` replace "cpu" with "gpu" if you want to run on gpu. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - training_steps: 1480 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.918 | 1.6393 | 100 | 2.5702 | | 2.4342 | 3.2787 | 200 | 2.2747 | | 2.2482 | 4.9180 | 300 | 2.1601 | | 2.1554 | 6.5574 | 400 | 2.0971 | | 2.1022 | 8.1967 | 500 | 2.0698 | | 2.0806 | 9.8361 | 600 | 2.0544 | | 2.0651 | 11.4754 | 700 | 2.0437 | | 2.0439 | 13.1148 | 800 | 2.0359 | | 2.0369 | 14.7541 | 900 | 2.0302 | | 2.034 | 16.3934 | 1000 | 2.0263 | | 2.0249 | 18.0328 | 1100 | 2.0236 | | 2.0174 | 19.6721 | 1200 | 2.0218 | | 2.0154 | 21.3115 | 1300 | 2.0203 | | 2.0145 | 22.9508 | 1400 | 2.0198 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.0.post0+cxx11.abi - Datasets 2.19.0 - Tokenizers 0.19.1