import os from trainer import Trainer, TrainerArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig from TTS.config.shared_configs import BaseAudioConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import Vits, VitsAudioConfig from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.utils.downloaders import download_thorsten_de output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig( formatter="mozilla", meta_file_train="metadata.csv", path="dataset/" ) audio_config = BaseAudioConfig( sample_rate=24000, do_trim_silence=True, resample=False, mel_fmin=0, mel_fmax=None ) character_config=CharactersConfig( characters='abnhikorstабвгдежзийклмнопрстуфхцчшщъыьэюяӏ', punctuations='!"(),-.:?«»– ', phonemes='', pad="", eos="", bos="", blank="", ) config = VitsConfig( dashboard_logger='wandb', audio=audio_config, run_name="vits_kbd_female", batch_size=24, eval_batch_size=16, batch_group_size=5, num_loader_workers=0, num_eval_loader_workers=2, run_eval=True, test_delay_epochs=-1, epochs=1000, save_step=1000, text_cleaner="basic_cleaners", use_phonemes=False, #phoneme_language="fa", characters=character_config, phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), compute_input_seq_cache=True, print_step=25, print_eval=True, mixed_precision=False, test_sentences=[ ["умыпӏащӏэу къедаӏуи псори къэпщӏэнщ"], ["щиху тхьэмпэ цӏыкӏухэм загъэсысу абы сэлам ирахыж щхьэкӏэ псыгъуэ лантӏэхэм загъэшауэ щхьэщэ хуащӏыж"], ["уэрамыбгъум къытеува цӏыху ӏувым я нэр тодие кхъэм яхьым"], ["дэнэ фхьа си лъагъуныгъэр"], ["а махуэм ежьащ цӏыху гъащӏэр зытекӏуэда лъагъуныгъэр"], ["езыхэри лэжьыгъэфӏкӏэ зи цӏэ къаӏэт къуажэ щӏалэгъуалэм ящыщт"], ["дауэ хъуами фенэ къуажэм яфӏэӏеякъым къэзыша унагъуэрти — я нэ-я псэт"], ["хъыджэбзри щтэжри екъужауэ жаӏэ ауэ хухэчыжакъым"], ["ауэ абыи куэд ихьакъым"] ], output_path=output_path, datasets=[dataset_config], ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # config is updated with the default characters if not defined in the config. tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init model model = Vits(config, ap, tokenizer, speaker_manager=None) # init the trainer and 🚀 trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit()