--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: XLS-R-300M - Urdu results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: ur metrics: - type: wer value: 23.75 name: Test WER - type: cer value: 8.31 name: Test CER --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.4147 - Wer: 0.3172 - Cer: 0.1050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5108 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.2894 | 7.83 | 400 | 3.1501 | 1.0 | 1.0 | | 1.8586 | 15.68 | 800 | 0.8871 | 0.6721 | 0.2402 | | 1.3431 | 23.52 | 1200 | 0.5813 | 0.5502 | 0.1939 | | 1.2052 | 31.37 | 1600 | 0.4956 | 0.4788 | 0.1665 | | 1.1097 | 39.21 | 2000 | 0.4447 | 0.4143 | 0.1397 | | 1.0528 | 47.06 | 2400 | 0.4439 | 0.3961 | 0.1333 | | 0.9939 | 54.89 | 2800 | 0.4348 | 0.4014 | 0.1379 | | 0.9441 | 62.74 | 3200 | 0.4236 | 0.3653 | 0.1223 | | 0.913 | 70.58 | 3600 | 0.4309 | 0.3475 | 0.1157 | | 0.8678 | 78.43 | 4000 | 0.4270 | 0.3337 | 0.1110 | | 0.8414 | 86.27 | 4400 | 0.4158 | 0.3220 | 0.1070 | | 0.817 | 94.12 | 4800 | 0.4185 | 0.3231 | 0.1072 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.1.dev0 - Tokenizers 0.12.1