--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |