1
---
2
language: or
3
datasets:
4
- common_voice 
5
metrics:
6
- wer
7
tags:
8
- audio
9
- automatic-speech-recognition
10
- speech
11
- xlsr-fine-tuning-week
12
license: apache-2.0
13
model-index:
14
- name: Anurag Singh XLSR Wav2Vec2 Large 53 Odia
15
  results:
16
  - task: 
17
      name: Speech Recognition
18
      type: automatic-speech-recognition
19
    dataset:
20
      name: Common Voice or
21
      type: common_voice
22
      args: or
23
    metrics:
24
       - name: Test WER
25
         type: wer
26
         value: 57.10
27
---
28
# Wav2Vec2-Large-XLSR-53-Odia
29
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
30
When using this model, make sure that your speech input is sampled at 16kHz.
31
## Usage
32
The model can be used directly (without a language model) as follows:
33
```python
34
import torch
35
import torchaudio
36
from datasets import load_dataset
37
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
38
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
39
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
40
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
41
resampler = torchaudio.transforms.Resample(48_000, 16_000)
42
# Preprocessing the datasets.
43
# We need to read the aduio files as arrays
44
def speech_file_to_array_fn(batch):
45
    speech_array, sampling_rate = torchaudio.load(batch["path"])
46
    batch["speech"] = resampler(speech_array).squeeze().numpy()
47
    return batch
48
test_dataset = test_dataset.map(speech_file_to_array_fn)
49
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
with torch.no_grad():
51
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
predicted_ids = torch.argmax(logits, dim=-1)
53
print("Prediction:", processor.batch_decode(predicted_ids))
54
print("Reference:", test_dataset["sentence"][:2])
55
```
56
## Evaluation
57
The model can be evaluated as follows on the Odia test data of Common Voice.
58
```python
59
import torch
60
import torchaudio
61
from datasets import load_dataset, load_metric
62
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
63
import re
64
test_dataset = load_dataset("common_voice", "or", split="test")
65
wer = load_metric("wer")
66
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
67
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
68
model.to("cuda")
69
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
70
resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
# Preprocessing the datasets.
72
# We need to read the aduio files as arrays
73
def speech_file_to_array_fn(batch):
74
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
75
    speech_array, sampling_rate = torchaudio.load(batch["path"])
76
    batch["speech"] = resampler(speech_array).squeeze().numpy()
77
    return batch
78
test_dataset = test_dataset.map(speech_file_to_array_fn)
79
# Preprocessing the datasets.
80
# We need to read the aduio files as arrays
81
def evaluate(batch):
82
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
83
    with torch.no_grad():
84
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
85
    pred_ids = torch.argmax(logits, dim=-1)
86
    batch["pred_strings"] = processor.batch_decode(pred_ids)
87
    return batch
88
result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
```
91
**Test Result**: 57.10 % 
92
## Training
93
The Common Voice `train` and `validation` datasets were used for training.