#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import glob import os import sys import time import traceback from random import randrange import numpy as np import torch from torch.utils.data import DataLoader from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.layers.losses import TacotronLoss from TTS.tts.utils.generic_utils import check_config_tts, setup_model from TTS.tts.utils.io import save_best_model, save_checkpoint from TTS.tts.utils.measures import alignment_diagonal_score from TTS.tts.utils.speakers import parse_speakers from TTS.tts.utils.synthesis import synthesis from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols from TTS.tts.utils.visual import plot_alignment, plot_spectrogram from TTS.utils.audio import AudioProcessor from TTS.utils.console_logger import ConsoleLogger from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor) from TTS.utils.generic_utils import (KeepAverage, count_parameters, create_experiment_folder, get_git_branch, remove_experiment_folder, set_init_dict) from TTS.utils.io import copy_model_files, load_config from TTS.utils.radam import RAdam from TTS.utils.tensorboard_logger import TensorboardLogger from TTS.utils.training import (NoamLR, adam_weight_decay, check_update, gradual_training_scheduler, set_weight_decay, setup_torch_training_env) use_cuda, num_gpus = setup_torch_training_env(True, False) def setup_loader(ap, r, is_val=False, verbose=False, dataset=None): if is_val and not c.run_eval: loader = None else: if dataset is None: dataset = MyDataset( r, c.text_cleaner, compute_linear_spec=c.model.lower() == 'tacotron', meta_data=meta_data_eval if is_val else meta_data_train, ap=ap, tp=c.characters if 'characters' in c.keys() else None, add_blank=c['add_blank'] if 'add_blank' in c.keys() else False, batch_group_size=0 if is_val else c.batch_group_size * c.batch_size, min_seq_len=c.min_seq_len, max_seq_len=c.max_seq_len, phoneme_cache_path=c.phoneme_cache_path, use_phonemes=c.use_phonemes, phoneme_language=c.phoneme_language, enable_eos_bos=c.enable_eos_bos_chars, verbose=verbose, speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None) if c.use_phonemes and c.compute_input_seq_cache: # precompute phonemes to have a better estimate of sequence lengths. dataset.compute_input_seq(c.num_loader_workers) dataset.sort_items() sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=c.eval_batch_size if is_val else c.batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, sampler=sampler, num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers, pin_memory=False) return loader def format_data(data): # setup input data text_input = data[0] text_lengths = data[1] speaker_names = data[2] linear_input = data[3] if c.model in ["Tacotron"] else None mel_input = data[4] mel_lengths = data[5] stop_targets = data[6] max_text_length = torch.max(text_lengths.float()) max_spec_length = torch.max(mel_lengths.float()) if c.use_speaker_embedding: if c.use_external_speaker_embedding_file: speaker_embeddings = data[8] speaker_ids = None else: speaker_ids = [ speaker_mapping[speaker_name] for speaker_name in speaker_names ] speaker_ids = torch.LongTensor(speaker_ids) speaker_embeddings = None else: speaker_embeddings = None speaker_ids = None # set stop targets view, we predict a single stop token per iteration. stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2) # dispatch data to GPU if use_cuda: text_input = text_input.cuda(non_blocking=True) text_lengths = text_lengths.cuda(non_blocking=True) mel_input = mel_input.cuda(non_blocking=True) mel_lengths = mel_lengths.cuda(non_blocking=True) linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron"] else None stop_targets = stop_targets.cuda(non_blocking=True) if speaker_ids is not None: speaker_ids = speaker_ids.cuda(non_blocking=True) if speaker_embeddings is not None: speaker_embeddings = speaker_embeddings.cuda(non_blocking=True) return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap, global_step, epoch, scaler, scaler_st): model.train() epoch_time = 0 keep_avg = KeepAverage() if use_cuda: batch_n_iter = int( len(data_loader.dataset) / (c.batch_size * num_gpus)) else: batch_n_iter = int(len(data_loader.dataset) / c.batch_size) end_time = time.time() c_logger.print_train_start() for num_iter, data in enumerate(data_loader): start_time = time.time() # format data text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data) loader_time = time.time() - end_time global_step += 1 # setup lr if c.noam_schedule: scheduler.step() optimizer.zero_grad() if optimizer_st: optimizer_st.zero_grad() with torch.cuda.amp.autocast(enabled=c.mixed_precision): # forward pass model if c.bidirectional_decoder or c.double_decoder_consistency: decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model( text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings) else: decoder_output, postnet_output, alignments, stop_tokens = model( text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings) decoder_backward_output = None alignments_backward = None # set the [alignment] lengths wrt reduction factor for guided attention if mel_lengths.max() % model.decoder.r != 0: alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r else: alignment_lengths = mel_lengths // model.decoder.r # compute loss loss_dict = criterion(postnet_output, decoder_output, mel_input, linear_input, stop_tokens, stop_targets, mel_lengths, decoder_backward_output, alignments, alignment_lengths, alignments_backward, text_lengths) # check nan loss if torch.isnan(loss_dict['loss']).any(): raise RuntimeError(f'Detected NaN loss at step {global_step}.') # optimizer step if c.mixed_precision: # model optimizer step in mixed precision mode scaler.scale(loss_dict['loss']).backward() scaler.unscale_(optimizer) optimizer, current_lr = adam_weight_decay(optimizer) grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True) scaler.step(optimizer) scaler.update() # stopnet optimizer step if c.separate_stopnet: scaler_st.scale( loss_dict['stopnet_loss']).backward() scaler.unscale_(optimizer_st) optimizer_st, _ = adam_weight_decay(optimizer_st) grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0) scaler_st.step(optimizer) scaler_st.update() else: grad_norm_st = 0 else: # main model optimizer step loss_dict['loss'].backward() optimizer, current_lr = adam_weight_decay(optimizer) grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True) optimizer.step() # stopnet optimizer step if c.separate_stopnet: loss_dict['stopnet_loss'].backward() optimizer_st, _ = adam_weight_decay(optimizer_st) grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0) optimizer_st.step() else: grad_norm_st = 0 # compute alignment error (the lower the better ) align_error = 1 - alignment_diagonal_score(alignments) loss_dict['align_error'] = align_error step_time = time.time() - start_time epoch_time += step_time # aggregate losses from processes if num_gpus > 1: loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus) loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus) loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus) loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss'] # detach loss values loss_dict_new = dict() for key, value in loss_dict.items(): if isinstance(value, (int, float)): loss_dict_new[key] = value else: loss_dict_new[key] = value.item() loss_dict = loss_dict_new # update avg stats update_train_values = dict() for key, value in loss_dict.items(): update_train_values['avg_' + key] = value update_train_values['avg_loader_time'] = loader_time update_train_values['avg_step_time'] = step_time keep_avg.update_values(update_train_values) # print training progress if global_step % c.print_step == 0: log_dict = { "max_spec_length": [max_spec_length, 1], # value, precision "max_text_length": [max_text_length, 1], "step_time": [step_time, 4], "loader_time": [loader_time, 2], "current_lr": current_lr, } c_logger.print_train_step(batch_n_iter, num_iter, global_step, log_dict, loss_dict, keep_avg.avg_values) if args.rank == 0: # Plot Training Iter Stats # reduce TB load if global_step % c.tb_plot_step == 0: iter_stats = { "lr": current_lr, "grad_norm": grad_norm, "grad_norm_st": grad_norm_st, "step_time": step_time } iter_stats.update(loss_dict) tb_logger.tb_train_iter_stats(global_step, iter_stats) if global_step % c.save_step == 0: if c.checkpoint: # save model save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH, optimizer_st=optimizer_st, model_loss=loss_dict['postnet_loss'], scaler=scaler.state_dict() if c.mixed_precision else None) # Diagnostic visualizations const_spec = postnet_output[0].data.cpu().numpy() gt_spec = linear_input[0].data.cpu().numpy() if c.model in [ "Tacotron", "TacotronGST" ] else mel_input[0].data.cpu().numpy() align_img = alignments[0].data.cpu().numpy() figures = { "prediction": plot_spectrogram(const_spec, ap, output_fig=False), "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), "alignment": plot_alignment(align_img, output_fig=False), } if c.bidirectional_decoder or c.double_decoder_consistency: figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False) tb_logger.tb_train_figures(global_step, figures) # Sample audio if c.model in ["Tacotron", "TacotronGST"]: train_audio = ap.inv_spectrogram(const_spec.T) else: train_audio = ap.inv_melspectrogram(const_spec.T) tb_logger.tb_train_audios(global_step, {'TrainAudio': train_audio}, c.audio["sample_rate"]) end_time = time.time() # print epoch stats c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg) # Plot Epoch Stats if args.rank == 0: epoch_stats = {"epoch_time": epoch_time} epoch_stats.update(keep_avg.avg_values) tb_logger.tb_train_epoch_stats(global_step, epoch_stats) if c.tb_model_param_stats: tb_logger.tb_model_weights(model, global_step) return keep_avg.avg_values, global_step @torch.no_grad() def evaluate(data_loader, model, criterion, ap, global_step, epoch): model.eval() epoch_time = 0 keep_avg = KeepAverage() c_logger.print_eval_start() if data_loader is not None: for num_iter, data in enumerate(data_loader): start_time = time.time() # format data text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data) assert mel_input.shape[1] % model.decoder.r == 0 # forward pass model if c.bidirectional_decoder or c.double_decoder_consistency: decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model( text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings) else: decoder_output, postnet_output, alignments, stop_tokens = model( text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings) decoder_backward_output = None alignments_backward = None # set the alignment lengths wrt reduction factor for guided attention if mel_lengths.max() % model.decoder.r != 0: alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r else: alignment_lengths = mel_lengths // model.decoder.r # compute loss loss_dict = criterion(postnet_output, decoder_output, mel_input, linear_input, stop_tokens, stop_targets, mel_lengths, decoder_backward_output, alignments, alignment_lengths, alignments_backward, text_lengths) # step time step_time = time.time() - start_time epoch_time += step_time # compute alignment score align_error = 1 - alignment_diagonal_score(alignments) loss_dict['align_error'] = align_error # aggregate losses from processes if num_gpus > 1: loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus) loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus) if c.stopnet: loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) # detach loss values loss_dict_new = dict() for key, value in loss_dict.items(): if isinstance(value, (int, float)): loss_dict_new[key] = value else: loss_dict_new[key] = value.item() loss_dict = loss_dict_new # update avg stats update_train_values = dict() for key, value in loss_dict.items(): update_train_values['avg_' + key] = value keep_avg.update_values(update_train_values) if c.print_eval: c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values) if args.rank == 0: # Diagnostic visualizations idx = np.random.randint(mel_input.shape[0]) const_spec = postnet_output[idx].data.cpu().numpy() gt_spec = linear_input[idx].data.cpu().numpy() if c.model in [ "Tacotron", "TacotronGST" ] else mel_input[idx].data.cpu().numpy() align_img = alignments[idx].data.cpu().numpy() eval_figures = { "prediction": plot_spectrogram(const_spec, ap, output_fig=False), "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), "alignment": plot_alignment(align_img, output_fig=False) } # Sample audio if c.model in ["Tacotron", "TacotronGST"]: eval_audio = ap.inv_spectrogram(const_spec.T) else: eval_audio = ap.inv_melspectrogram(const_spec.T) tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"]) # Plot Validation Stats if c.bidirectional_decoder or c.double_decoder_consistency: align_b_img = alignments_backward[idx].data.cpu().numpy() eval_figures['alignment2'] = plot_alignment(align_b_img, output_fig=False) tb_logger.tb_eval_stats(global_step, keep_avg.avg_values) tb_logger.tb_eval_figures(global_step, eval_figures) if args.rank == 0 and epoch > c.test_delay_epochs: if c.test_sentences_file is None: test_sentences = [ "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", "Be a voice, not an echo.", "I'm sorry Dave. I'm afraid I can't do that.", "This cake is great. It's so delicious and moist.", "Prior to November 22, 1963." ] else: with open(c.test_sentences_file, "r") as f: test_sentences = [s.strip() for s in f.readlines()] # test sentences test_audios = {} test_figures = {} print(" | > Synthesizing test sentences") speaker_id = 0 if c.use_speaker_embedding else None speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if c.use_external_speaker_embedding_file and c.use_speaker_embedding else None style_wav = c.get("gst_style_input") if style_wav is None and c.use_gst: # inicialize GST with zero dict. style_wav = {} print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!") for i in range(c.gst['gst_style_tokens']): style_wav[str(i)] = 0 style_wav = c.get("gst_style_input") for idx, test_sentence in enumerate(test_sentences): try: wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis( model, test_sentence, c, use_cuda, ap, speaker_id=speaker_id, speaker_embedding=speaker_embedding, style_wav=style_wav, truncated=False, enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument use_griffin_lim=True, do_trim_silence=False) file_path = os.path.join(AUDIO_PATH, str(global_step)) os.makedirs(file_path, exist_ok=True) file_path = os.path.join(file_path, "TestSentence_{}.wav".format(idx)) ap.save_wav(wav, file_path) test_audios['{}-audio'.format(idx)] = wav test_figures['{}-prediction'.format(idx)] = plot_spectrogram( postnet_output, ap, output_fig=False) test_figures['{}-alignment'.format(idx)] = plot_alignment( alignment, output_fig=False) except: #pylint: disable=bare-except print(" !! Error creating Test Sentence -", idx) traceback.print_exc() tb_logger.tb_test_audios(global_step, test_audios, c.audio['sample_rate']) tb_logger.tb_test_figures(global_step, test_figures) return keep_avg.avg_values # FIXME: move args definition/parsing inside of main? def main(args): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping # Audio processor ap = AudioProcessor(**c.audio) if 'characters' in c.keys(): symbols, phonemes = make_symbols(**c.characters) # DISTRUBUTED if num_gpus > 1: init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"]) num_chars = len(phonemes) if c.use_phonemes else len(symbols) # load data instances meta_data_train, meta_data_eval = load_meta_data(c.datasets) # set the portion of the data used for training if 'train_portion' in c.keys(): meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)] if 'eval_portion' in c.keys(): meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)] # parse speakers num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH) model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim) # scalers for mixed precision training scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None params = set_weight_decay(model, c.wd) optimizer = RAdam(params, lr=c.lr, weight_decay=0) if c.stopnet and c.separate_stopnet: optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0) else: optimizer_st = None # setup criterion criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4) if args.restore_path: checkpoint = torch.load(args.restore_path, map_location='cpu') try: print(" > Restoring Model.") model.load_state_dict(checkpoint['model']) # optimizer restore print(" > Restoring Optimizer.") optimizer.load_state_dict(checkpoint['optimizer']) if "scaler" in checkpoint and c.mixed_precision: print(" > Restoring AMP Scaler...") scaler.load_state_dict(checkpoint["scaler"]) if c.reinit_layers: raise RuntimeError except (KeyError, RuntimeError): print(" > Partial model initialization.") model_dict = model.state_dict() model_dict = set_init_dict(model_dict, checkpoint['model'], c) # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt')) # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt')) model.load_state_dict(model_dict) del model_dict for group in optimizer.param_groups: group['lr'] = c.lr print(" > Model restored from step %d" % checkpoint['step'], flush=True) args.restore_step = checkpoint['step'] else: args.restore_step = 0 if use_cuda: model.cuda() criterion.cuda() # DISTRUBUTED if num_gpus > 1: model = apply_gradient_allreduce(model) if c.noam_schedule: scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) else: scheduler = None num_params = count_parameters(model) print("\n > Model has {} parameters".format(num_params), flush=True) if 'best_loss' not in locals(): best_loss = float('inf') # define data loaders train_loader = setup_loader(ap, model.decoder.r, is_val=False, verbose=True) eval_loader = setup_loader(ap, model.decoder.r, is_val=True) global_step = args.restore_step for epoch in range(0, c.epochs): c_logger.print_epoch_start(epoch, c.epochs) # set gradual training if c.gradual_training is not None: r, c.batch_size = gradual_training_scheduler(global_step, c) c.r = r model.decoder.set_r(r) if c.bidirectional_decoder: model.decoder_backward.set_r(r) train_loader.dataset.outputs_per_step = r eval_loader.dataset.outputs_per_step = r train_loader = setup_loader(ap, model.decoder.r, is_val=False, dataset=train_loader.dataset) eval_loader = setup_loader(ap, model.decoder.r, is_val=True, dataset=eval_loader.dataset) print("\n > Number of output frames:", model.decoder.r) # train one epoch train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer, optimizer_st, scheduler, ap, global_step, epoch, scaler, scaler_st) # eval one epoch eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch) c_logger.print_epoch_end(epoch, eval_avg_loss_dict) target_loss = train_avg_loss_dict['avg_postnet_loss'] if c.run_eval: target_loss = eval_avg_loss_dict['avg_postnet_loss'] best_loss = save_best_model( target_loss, best_loss, model, optimizer, global_step, epoch, c.r, OUT_PATH, scaler=scaler.state_dict() if c.mixed_precision else None) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--continue_path', type=str, help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.', default='', required='--config_path' not in sys.argv) parser.add_argument( '--restore_path', type=str, help='Model file to be restored. Use to finetune a model.', default='') parser.add_argument( '--config_path', type=str, help='Path to config file for training.', required='--continue_path' not in sys.argv ) parser.add_argument('--debug', type=bool, default=False, help='Do not verify commit integrity to run training.') # DISTRUBUTED parser.add_argument( '--rank', type=int, default=0, help='DISTRIBUTED: process rank for distributed training.') parser.add_argument('--group_id', type=str, default="", help='DISTRIBUTED: process group id.') args = parser.parse_args() if args.continue_path != '': print(f" > Training continues for {args.continue_path}") args.output_path = args.continue_path args.config_path = os.path.join(args.continue_path, 'config.json') list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv latest_model_file = max(list_of_files, key=os.path.getctime) args.restore_path = latest_model_file # setup output paths and read configs c = load_config(args.config_path) check_config_tts(c) _ = os.path.dirname(os.path.realpath(__file__)) if c.mixed_precision: print(" > Mixed precision mode is ON") OUT_PATH = args.continue_path if args.continue_path == '': OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug) AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios') c_logger = ConsoleLogger() if args.rank == 0: os.makedirs(AUDIO_PATH, exist_ok=True) new_fields = {} if args.restore_path: new_fields["restore_path"] = args.restore_path new_fields["github_branch"] = get_git_branch() copy_model_files(c, args.config_path, OUT_PATH, new_fields) os.chmod(AUDIO_PATH, 0o775) os.chmod(OUT_PATH, 0o775) LOG_DIR = OUT_PATH tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS') # write model desc to tensorboard tb_logger.tb_add_text('model-description', c['run_description'], 0) try: main(args) except KeyboardInterrupt: remove_experiment_folder(OUT_PATH) try: sys.exit(0) except SystemExit: os._exit(0) # pylint: disable=protected-access except Exception: # pylint: disable=broad-except remove_experiment_folder(OUT_PATH) traceback.print_exc() sys.exit(1)