--- language: - all license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - google/xtreme_s - PolyAI/minds14 metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_minds14 results: [] --- # xtreme_s_xlsr_300m_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9033 - Accuracy Cs-cz: 0.9164 - Accuracy De-de: 0.9477 - Accuracy En-au: 0.9235 - Accuracy En-gb: 0.9324 - Accuracy En-us: 0.9326 - Accuracy Es-es: 0.9177 - Accuracy Fr-fr: 0.9444 - Accuracy It-it: 0.9167 - Accuracy Ko-kr: 0.8649 - Accuracy Nl-nl: 0.9450 - Accuracy Pl-pl: 0.9146 - Accuracy Pt-pt: 0.8940 - Accuracy Ru-ru: 0.8667 - Accuracy Zh-cn: 0.7291 - F1: 0.9015 - F1 Cs-cz: 0.9154 - F1 De-de: 0.9467 - F1 En-au: 0.9199 - F1 En-gb: 0.9334 - F1 En-us: 0.9308 - F1 Es-es: 0.9158 - F1 Fr-fr: 0.9436 - F1 It-it: 0.9135 - F1 Ko-kr: 0.8642 - F1 Nl-nl: 0.9440 - F1 Pl-pl: 0.9159 - F1 Pt-pt: 0.8883 - F1 Ru-ru: 0.8646 - F1 Zh-cn: 0.7249 - Loss: 0.4119 - Loss Cs-cz: 0.3790 - Loss De-de: 0.2649 - Loss En-au: 0.3459 - Loss En-gb: 0.2853 - Loss En-us: 0.2203 - Loss Es-es: 0.2731 - Loss Fr-fr: 0.1909 - Loss It-it: 0.3520 - Loss Ko-kr: 0.5431 - Loss Nl-nl: 0.2515 - Loss Pl-pl: 0.4113 - Loss Pt-pt: 0.4798 - Loss Ru-ru: 0.6470 - Loss Zh-cn: 1.1216 - Predict Samples: 4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 | | 1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 | | 0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 | | 0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 | | 0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 | | 0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 | | 0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 | | 0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 | | 0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6