--- license: apache-2.0 tags: - generated_from_trainer datasets: - xtreme_s metrics: - accuracy model-index: - name: xtreme_s_xlsr_300m_fleurs_langid_truncated results: [] --- # xtreme_s_xlsr_300m_fleurs_langid_truncated This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset. It achieves the following results on the evaluation set: - Accuracy: 0.7236 - Loss: 1.3514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 | | 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 | | 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 | | 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 | | 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 | | 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 | | 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 | | 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 | | 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 | | 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 | | 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 | | 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 | | 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 | | 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 | | 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 | | 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 | | 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 | | 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 | | 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6