--- license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: legal-bert-base-uncased-supreme-court-summaries-2 results: [] --- # legal-bert-base-uncased-supreme-court-summaries-2 This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5445 - Accuracy: 0.6156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 47 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6228 | 1.0 | 1320 | 0.6084 | 0.6267 | | 0.5672 | 2.0 | 2640 | 0.6318 | 0.6315 | | 0.4577 | 3.0 | 3960 | 0.7553 | 0.6248 | | 0.3173 | 4.0 | 5280 | 0.9317 | 0.6207 | | 0.2069 | 5.0 | 6600 | 1.2745 | 0.6163 | | 0.146 | 6.0 | 7920 | 1.5445 | 0.6156 | ### Framework versions - Transformers 4.35.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1