--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-soccer-binary results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9714285714285714 --- # swin-tiny-patch4-window7-224-finetuned-soccer-binary This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1138 - Accuracy: 0.9714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1286 | 0.96 | 12 | 0.1138 | 0.9714 | | 0.1267 | 2.0 | 25 | 0.1283 | 0.9657 | | 0.121 | 2.96 | 37 | 0.1124 | 0.9657 | | 0.1142 | 4.0 | 50 | 0.1151 | 0.9657 | | 0.1069 | 4.96 | 62 | 0.1063 | 0.96 | | 0.1038 | 6.0 | 75 | 0.1210 | 0.96 | | 0.0935 | 6.96 | 87 | 0.1150 | 0.96 | | 0.1042 | 8.0 | 100 | 0.1038 | 0.9657 | | 0.0945 | 8.96 | 112 | 0.1071 | 0.96 | | 0.0891 | 9.6 | 120 | 0.1077 | 0.96 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1