--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: albert-xlarge-v2-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7132352941176471 - name: F1 type: f1 value: 0.8145800316957211 --- # albert-xlarge-v2-finetuned-mrpc This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5563 - Accuracy: 0.7132 - F1: 0.8146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.6898 | 0.5221 | 0.6123 | | No log | 2.0 | 126 | 0.6298 | 0.6838 | 0.8122 | | No log | 3.0 | 189 | 0.6043 | 0.7010 | 0.8185 | | No log | 4.0 | 252 | 0.5834 | 0.7010 | 0.8146 | | No log | 5.0 | 315 | 0.5563 | 0.7132 | 0.8146 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3