--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-base-v2-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.7364620938628159 --- # albert-base-v2-finetuned-rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9021 - Accuracy: 0.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 249 | 0.6435 | 0.6390 | | No log | 2.0 | 498 | 0.6611 | 0.6643 | | 0.6323 | 3.0 | 747 | 0.5905 | 0.7220 | | 0.6323 | 4.0 | 996 | 0.7265 | 0.7256 | | 0.3885 | 5.0 | 1245 | 0.9021 | 0.7365 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3