--- language: - vi base_model: openai/whisper-medium-ja-v2 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Vi - Anh Phuong results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ja split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 62.82245827010622 --- # Whisper Medium Vi - Anh Phuong This model is a fine-tuned version of [openai/whisper-medium-ja-v2](https://huggingface.co/openai/whisper-medium-ja-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3098 - Wer: 62.8225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1131 | 1.4556 | 1000 | 0.2257 | 68.5454 | | 0.0579 | 2.9112 | 2000 | 0.2363 | 65.5105 | | 0.0087 | 4.3668 | 3000 | 0.2685 | 65.1203 | | 0.003 | 5.8224 | 4000 | 0.2924 | 63.9931 | | 0.0007 | 7.2780 | 5000 | 0.3041 | 63.1043 | | 0.0005 | 8.7336 | 6000 | 0.3098 | 62.8225 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1