--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: ViT5_1024 results: [] --- # ViT5_1024 This model is a fine-tuned version of [VietAI/vit5-base-vietnews-summarization](https://huggingface.co/VietAI/vit5-base-vietnews-summarization) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Rouge-1: 0.3673 - Rouge-2: 0.2276 - Rouge-4: 0.1451 - Rouge-l: 0.3317 - Rouge-w-1.2: 0.1398 - Rouge-s4: 0.1853 - Rouge-su4: 0.2162 - R: 0.3044 - P: 0.463 - Bleu: 19.2804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-4 | Rouge-l | Rouge-w-1.2 | Rouge-s4 | Rouge-su4 | R | P | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-----------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.5811 | 1.0 | 629 | 0.5152 | 0.2291 | 0.147 | 0.0963 | 0.2053 | 0.0868 | 0.1206 | 0.139 | 0.1836 | 0.3046 | 10.8017 | | 0.5204 | 2.0 | 1258 | 0.5024 | 0.3559 | 0.2182 | 0.1371 | 0.3191 | 0.1355 | 0.1755 | 0.2061 | 0.2945 | 0.4495 | 18.7571 | | 0.4607 | 3.0 | 1887 | 0.4984 | 0.3674 | 0.222 | 0.1374 | 0.329 | 0.1386 | 0.1787 | 0.2107 | 0.3108 | 0.4493 | 19.4123 | | 0.4577 | 4.0 | 2516 | 0.5008 | 0.3673 | 0.2276 | 0.1451 | 0.3317 | 0.1398 | 0.1853 | 0.2162 | 0.3044 | 0.463 | 19.2804 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3