--- license: apache-2.0 base_model: bert-base-uncased tags: - classification - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: clasificador-dair-ai results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.928 --- # clasificador-dair-ai This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2394 | 1.0 | 2000 | 0.2142 | 0.926 | | 0.142 | 2.0 | 4000 | 0.2030 | 0.932 | | 0.1015 | 3.0 | 6000 | 0.2186 | 0.928 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2