--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/zephyr-7B-alpha-GPTQ model-index: - name: zephyr-support-chatbot results: [] datasets: - bitext/Bitext-customer-support-llm-chatbot-training-dataset pipeline_tag: text-generation --- # zephyr-7B-alpha-GPTQ ## Model description Large language models have achieved groundbreaking success in the field of natural language processing (NLP). However, since these models are generally trained for general-purpose tasks, they may not perform optimally for specific tasks. Therefore, fine-tuning these large models for specific tasks is a common practice. In this article, we will delve into the process of fine-tuning and adapting the Zephyr-7B-alpha-GPTQ, a large language model, for a particular task. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2 ### Author - Anezatra Katedram