import math import json import torch from threading import Thread from copy import deepcopy from PIL import Image from torchvision import transforms from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer from transformers import AutoProcessor from .configuration_minicpm import MiniCPMVConfig from .resampler import Resampler IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD class MiniCPMVPreTrainedModel(LlamaPreTrainedModel): config_class = MiniCPMVConfig class MiniCPMV(MiniCPMVPreTrainedModel): def __init__(self, config): super().__init__(config) self.llm = LlamaForCausalLM(config) self.vpm = self.init_vision_module() self.vision_dim = self.vpm.embed_dim self.embed_dim = self.llm.config.hidden_size self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) self.transform = self.init_transform() def init_vision_module(self): # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit model = Idefics2VisionTransformer(self.config.vision_config) if self.config.drop_vision_last_layer: model.encoder.layers = model.encoder.layers[:-1] setattr(model, 'embed_dim', model.embeddings.embed_dim) setattr(model, 'patch_size', model.embeddings.patch_size) return model def init_resampler(self, embed_dim, vision_dim): return Resampler( num_queries=self.config.query_num, embed_dim=embed_dim, num_heads=embed_dim // 128, kv_dim=vision_dim, adaptive=True ) def init_transform(self): return transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD ), ] ) def get_input_embeddings(self): return self.llm.get_input_embeddings() def set_input_embeddings(self, value): self.llm.embed_tokens = value def get_output_embeddings(self): return self.llm.lm_head def set_output_embeddings(self, new_embeddings): self.llm.lm_head = new_embeddings def set_decoder(self, decoder): self.llm = decoder def get_decoder(self): return self.llm def get_vllm_embedding(self, data): if 'vision_hidden_states' not in data: dtype = self.llm.model.embed_tokens.weight.dtype device = self.llm.model.embed_tokens.weight.device tgt_sizes = data['tgt_sizes'] pixel_values_list = data['pixel_values'] vision_hidden_states = [] all_pixel_values = [] img_cnt = [] for pixel_values in pixel_values_list: img_cnt.append(len(pixel_values)) all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # exist image if all_pixel_values: tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32) if self.config.batch_vision_input: max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1]) all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, padding_value=0.0) B, L, _ = all_pixel_values.shape all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) # print(B, "BATCH") patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device) for i in range(B): patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state vision_embedding = self.resampler(vision_embedding, tgt_sizes) else: # get vision_embedding foreach # print("HERE, NOT BATCH") vision_embedding = [] for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values): single_pixel_values = single_pixel_values.unsqueeze(0) B, L, _ = single_pixel_values.shape single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0)) vision_embedding.append(single_vision_embedding) vision_embedding = torch.vstack(vision_embedding) start = 0 for pixel_values in pixel_values_list: img_cnt = len(pixel_values) if img_cnt > 0: vision_hidden_states.append(vision_embedding[start: start + img_cnt]) start += img_cnt else: vision_hidden_states.append([]) else: # no image if self.training: dummy_image = torch.zeros( (1, 3, 224, 224), device=device, dtype=dtype ) tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32) dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes) else: dummy_feature = [] for _ in range(len(pixel_values_list)): vision_hidden_states.append(dummy_feature) else: vision_hidden_states = data['vision_hidden_states'] if hasattr(self.llm.config, 'scale_emb'): vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb else: vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance( i, torch.Tensor) else i for i in vision_hidden_states] bs = len(data['input_ids']) for i in range(bs): cur_vs_hs = vision_hidden_states[i] if len(cur_vs_hs) > 0: cur_vllm_emb = vllm_embedding[i] cur_image_bound = data['image_bound'][i] if len(cur_image_bound) > 0: image_indices = torch.stack( [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound] ).to(vllm_embedding.device) cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), cur_vs_hs.view(-1, cur_vs_hs.shape[-1])) elif self.training: cur_vllm_emb += cur_vs_hs[0].mean() * 0 # print(vllm_embedding.shape) return vllm_embedding, vision_hidden_states def forward(self, data, **kwargs): vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) position_ids = data["position_ids"] if position_ids.dtype != torch.int64: position_ids = position_ids.long() return self.llm( input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs ) def _decode_text(self, result_ids, tokenizer): result_text = [] for result in result_ids: result = result[result != 0] if result[0] == tokenizer.bos_id: result = result[1:] if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id: result = result[:-1] # print(result) result_text.append(tokenizer.decode(result).strip()) return result_text def _decode(self, inputs_embeds, tokenizer, attention_mask=None, decode_text=False, **kwargs): terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] output = None if (attention_mask != None): output = self.llm.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, pad_token_id=0, eos_token_id=terminators, **kwargs ) else: output = self.llm.generate( inputs_embeds=inputs_embeds, pad_token_id=0, eos_token_id=terminators, **kwargs ) if decode_text: return self._decode_text(output, tokenizer) return output def _decode_stream(self, inputs_embeds, tokenizer, **kwargs): terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] streamer = TextIteratorStreamer(tokenizer=tokenizer) generation_kwargs = { 'inputs_embeds': inputs_embeds, 'pad_token_id': 0, 'eos_token_id': terminators, 'streamer': streamer } generation_kwargs.update(kwargs) thread = Thread(target=self.llm.generate, kwargs=generation_kwargs) thread.start() return streamer def generate( self, model_inputs_batch, tokenizer=None, vision_hidden_states=None, stream=False, **kwargs ): batch = [] counter = 0 for model_inputs in model_inputs_batch: bs = len(model_inputs["input_ids"]) img_list = model_inputs["pixel_values"] tgt_sizes = model_inputs["tgt_sizes"] if img_list is None: img_list = [[] for i in range(bs)] assert bs == len(img_list) if vision_hidden_states is None: pixel_values = [] for i in range(bs): img_inps = [] for img in img_list[i]: img_inps.append(img.to(self.device)) if img_inps: pixel_values.append(img_inps) else: pixel_values.append([]) model_inputs["pixel_values"] = pixel_values model_inputs['tgt_sizes'] = tgt_sizes else: model_inputs["vision_hidden_states"] = vision_hidden_states # print(model_inputs) ( input_embeds, vision_hidden_states_dummy, ) = self.get_vllm_embedding(model_inputs) # print(input_embeds.shape, f"INPUT_EMBEDS {counter}") counter += 1 batch.append(input_embeds) # batch = torch.cat(batch, dim=0) # pad_sequence(embeddings_list, batch_first=True, padding_value=0.0) max_x = max(tensor.shape[1] for tensor in batch) # Step 2: Automatically pad each tensor to have the same length (L) in the last dimension attention_mask = [] embedding_layer = self.get_input_embeddings() # Retrieve the embedding vector for pad_token_id pad_embedding_vector = embedding_layer.weight[0] vector_reshaped = pad_embedding_vector.view(1, 1, 4096) for place, tensor in enumerate(batch): # Calculate how much padding is needed on the left padding_needed = max_x - tensor.shape[1] # Create the list for the attention mask, marking the padded tokens to_add = [0] * padding_needed + [1] * tensor.shape[1] # Create the padding tensor of the correct size padding_tensor = vector_reshaped.expand(tensor.shape[0], padding_needed, tensor.shape[2]) # Concatenate the padding tensor to the left of the original tensor tensor = torch.cat((padding_tensor, tensor), dim=1) # print(tensor.shape, "UPDATED_SHAPE") # Update the batch with the padded tensor batch[place] = tensor # Append the attention mask for this tensor attention_mask.append(to_add) attention_mask = torch.tensor(attention_mask) # print(attention_mask.shape) # print(attention_mask, "ATTENTION") # attention_mask = attention_mask.to(self.device) # padded_tensors = [torch.nn.functional.pad(tensor, (0, 0, 0, max_x - tensor.shape[1])) for tensor in batch] # Step 3: Stack the padded tensors into a single batch # for stuff in batch: # print(stuff.shape, "SHAPE") batch = torch.cat(batch, dim=0) # print(batch.shape) # print(batch) # output_ids = self._decode(input_embeds, tokenizer, **kwargs) if stream: kwargs.pop("decode_text") result = self._decode_stream(batch, tokenizer, **kwargs) else: result = self._decode(batch, tokenizer, attention_mask=attention_mask, **kwargs) return result def chat( self, images, msgs, tokenizer, processor=None, vision_hidden_states=None, max_new_tokens=1024, sampling=True, max_inp_length=2048, system_prompt='', stream=False, **kwargs ): if processor is None: processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) if isinstance(msgs, str): msgs = json.loads(msgs) # copy_msgs = deepcopy(msgs) assert len(msgs) > 0, "msgs is empty" assert sampling or not stream, "if use stream mode, make sure sampling=True" assert(len(msgs) == len(images)), "Make sure to have one image per item in your batch" batchM = [] batchI = [] for ind in range(len(images)): image = images[ind] copy_msgs = deepcopy(msgs[ind]) if image is not None and isinstance(copy_msgs[0]["content"], str): # deep copy element copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]] imagelist = image for i, msg in enumerate(copy_msgs): role = msg["role"] content = msg["content"] assert role in ["user", "assistant"] if i == 0: assert role == "user", "The role of first msg should be user" if isinstance(content, str): content = [content] cur_msgs = [] for c in content: if isinstance(c, Image.Image): imagelist = c cur_msgs.append("(./)") elif isinstance(c, str): cur_msgs.append(c) msg["content"] = "\n".join(cur_msgs) if system_prompt: sys_msg = {'role': 'system', 'content': system_prompt} copy_msgs = [sys_msg] + copy_msgs batchM.append(copy_msgs) batchI.append(imagelist) prompt = processor.tokenizer.apply_chat_template(batchM, tokenize=False, add_generation_prompt=True) inputs = processor(prompt, batchI, return_tensors="pt", max_length=max_inp_length) for input in inputs: input = input.to(self.device) if sampling: generation_config = { "top_p": 0.8, "top_k": 100, "temperature": 0.7, "do_sample": True, "repetition_penalty": 1.05 } else: generation_config = { "num_beams": 3, "repetition_penalty": 1.2, } generation_config.update( (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys() ) with torch.inference_mode(): res = self.generate( inputs, tokenizer=tokenizer, max_new_tokens=max_new_tokens, vision_hidden_states=vision_hidden_states, stream=stream, decode_text=True, **generation_config ) if stream: def stream_gen(): for text in res: text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '') yield text return stream_gen() else: answer = res return answer