import torch import torch.nn as nn import numpy as np import time import math import random from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence # from networks.layers import * def init_weight(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): nn.init.xavier_normal_(m.weight) # m.bias.data.fill_(0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) # batch_size, dimension and position # output: (batch_size, dim) def positional_encoding(batch_size, dim, pos): assert batch_size == pos.shape[0] positions_enc = np.array([ [pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)] for j in range(batch_size) ], dtype=np.float32) positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2]) positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2]) return torch.from_numpy(positions_enc).float() def get_padding_mask(batch_size, seq_len, cap_lens): cap_lens = cap_lens.data.tolist() mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32) for i, cap_len in enumerate(cap_lens): mask_2d[i, :, :cap_len] = 0 return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone() def top_k_logits(logits, k): v, ix = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float('Inf') return out class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=300): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) # pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, pos): return self.pe[pos] class MovementConvEncoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MovementConvEncoder, self).__init__() self.main = nn.Sequential( nn.Conv1d(input_size, hidden_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(hidden_size, output_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), ) self.out_net = nn.Linear(output_size, output_size) self.main.apply(init_weight) self.out_net.apply(init_weight) def forward(self, inputs): inputs = inputs.permute(0, 2, 1) outputs = self.main(inputs).permute(0, 2, 1) # print(outputs.shape) return self.out_net(outputs) class MovementConvDecoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MovementConvDecoder, self).__init__() self.main = nn.Sequential( nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1), # nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1), # nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), ) self.out_net = nn.Linear(output_size, output_size) self.main.apply(init_weight) self.out_net.apply(init_weight) def forward(self, inputs): inputs = inputs.permute(0, 2, 1) outputs = self.main(inputs).permute(0, 2, 1) return self.out_net(outputs) class TextEncoderBiGRUCo(nn.Module): def __init__(self, word_size, pos_size, hidden_size, output_size, device): super(TextEncoderBiGRUCo, self).__init__() self.device = device self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.pos_emb.apply(init_weight) self.output_net.apply(init_weight) # self.linear2.apply(init_weight) # self.batch_size = batch_size self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, word_embs, pos_onehot, cap_lens): num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last) class MotionEncoderBiGRUCo(nn.Module): def __init__(self, input_size, hidden_size, output_size, device): super(MotionEncoderBiGRUCo, self).__init__() self.device = device self.input_emb = nn.Linear(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size*2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.output_net.apply(init_weight) self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, inputs, m_lens): num_samples = inputs.shape[0] input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = m_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last)