import os import numpy as np # import cv2 from PIL import Image from utils import paramUtil import math import time import matplotlib.pyplot as plt # from scipy.ndimage import gaussian_filter def mkdir(path): if not os.path.exists(path): os.makedirs(path) COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] MISSING_VALUE = -1 def save_image(image_numpy, image_path): img_pil = Image.fromarray(image_numpy) img_pil.save(image_path) def save_logfile(log_loss, save_path): with open(save_path, 'wt') as f: for k, v in log_loss.items(): w_line = k for digit in v: w_line += ' %.3f' % digit f.write(w_line + '\n') def print_current_loss(start_time, niter_state, total_niters, losses, epoch=None, sub_epoch=None, inner_iter=None, tf_ratio=None, sl_steps=None): def as_minutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def time_since(since, percent): now = time.time() s = now - since es = s / percent rs = es - s return '%s (- %s)' % (as_minutes(s), as_minutes(rs)) if epoch is not None: print('ep/it:%2d-%4d niter:%6d' % (epoch, inner_iter, niter_state), end=" ") message = ' %s completed:%3d%%)' % (time_since(start_time, niter_state / total_niters), niter_state / total_niters * 100) # now = time.time() # message += '%s'%(as_minutes(now - start_time)) for k, v in losses.items(): message += ' %s: %.4f ' % (k, v) # message += ' sl_length:%2d tf_ratio:%.2f'%(sl_steps, tf_ratio) print(message) def print_current_loss_decomp(start_time, niter_state, total_niters, losses, epoch=None, inner_iter=None): def as_minutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def time_since(since, percent): now = time.time() s = now - since es = s / percent rs = es - s return '%s (- %s)' % (as_minutes(s), as_minutes(rs)) print('epoch: %03d inner_iter: %5d' % (epoch, inner_iter), end=" ") # now = time.time() message = '%s niter: %07d completed: %3d%%)'%(time_since(start_time, niter_state / total_niters), niter_state, niter_state / total_niters * 100) for k, v in losses.items(): message += ' %s: %.4f ' % (k, v) print(message) def compose_gif_img_list(img_list, fp_out, duration): img, *imgs = [Image.fromarray(np.array(image)) for image in img_list] img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False, save_all=True, loop=0, duration=duration) def save_images(visuals, image_path): if not os.path.exists(image_path): os.makedirs(image_path) for i, (label, img_numpy) in enumerate(visuals.items()): img_name = '%d_%s.jpg' % (i, label) save_path = os.path.join(image_path, img_name) save_image(img_numpy, save_path) def save_images_test(visuals, image_path, from_name, to_name): if not os.path.exists(image_path): os.makedirs(image_path) for i, (label, img_numpy) in enumerate(visuals.items()): img_name = "%s_%s_%s" % (from_name, to_name, label) save_path = os.path.join(image_path, img_name) save_image(img_numpy, save_path) def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)): # print(col, row) compose_img = compose_image(img_list, col, row, img_size) if not os.path.exists(save_dir): os.makedirs(save_dir) img_path = os.path.join(save_dir, img_name) # print(img_path) compose_img.save(img_path) def compose_image(img_list, col, row, img_size): to_image = Image.new('RGB', (col * img_size[0], row * img_size[1])) for y in range(0, row): for x in range(0, col): from_img = Image.fromarray(img_list[y * col + x]) # print((x * img_size[0], y*img_size[1], # (x + 1) * img_size[0], (y + 1) * img_size[1])) paste_area = (x * img_size[0], y*img_size[1], (x + 1) * img_size[0], (y + 1) * img_size[1]) to_image.paste(from_img, paste_area) # to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img return to_image def plot_loss_curve(losses, save_path, intervals=500): plt.figure(figsize=(10, 5)) plt.title("Loss During Training") for key in losses.keys(): plt.plot(list_cut_average(losses[key], intervals), label=key) plt.xlabel("Iterations/" + str(intervals)) plt.ylabel("Loss") plt.legend() plt.savefig(save_path) plt.show() def list_cut_average(ll, intervals): if intervals == 1: return ll bins = math.ceil(len(ll) * 1.0 / intervals) ll_new = [] for i in range(bins): l_low = intervals * i l_high = l_low + intervals l_high = l_high if l_high < len(ll) else len(ll) ll_new.append(np.mean(ll[l_low:l_high])) return ll_new # def motion_temporal_filter(motion, sigma=1): # motion = motion.reshape(motion.shape[0], -1) # # print(motion.shape) # for i in range(motion.shape[1]): # motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest") # return motion.reshape(motion.shape[0], -1, 3)