--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-mri results: [] --- # vit-base-brain-mri This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the BrainMRI dataset. It achieves the following results on the evaluation set: - Loss: 1.1297 - Accuracy: 0.5685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | No log | 1.0 | 72 | 0.6289 | 0.9818 | | 1.0744 | 2.0 | 144 | 0.6864 | 0.8287 | | 0.7716 | 3.0 | 216 | 0.7160 | 0.7535 | | 0.7716 | 4.0 | 288 | 0.7404 | 0.7140 | | 0.6975 | 5.0 | 360 | 0.7491 | 0.7015 | | 0.6651 | 6.0 | 432 | 0.7631 | 0.6839 | | 0.6307 | 7.0 | 504 | 0.7700 | 0.6624 | | 0.6307 | 8.0 | 576 | 0.7822 | 0.6363 | | 0.5857 | 9.0 | 648 | 0.7822 | 0.6089 | | 0.576 | 10.0 | 720 | 0.7770 | 0.6249 | | 0.576 | 11.0 | 792 | 0.6184 | 0.7840 | | 0.5733 | 12.0 | 864 | 0.6006 | 0.7944 | | 0.5555 | 13.0 | 936 | 0.5898 | 0.8014 | | 0.5481 | 14.0 | 1008 | 0.5857 | 0.8223 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1