from typing import Dict, Any, List, Generator import torch import os import logging from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline import numpy as np from queue import Queue, Empty import threading import base64 import uuid class EndpointHandler: def __init__(self, path=""): ( self.module_kwargs, self.socket_receiver_kwargs, self.socket_sender_kwargs, self.vad_handler_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, ) = get_default_arguments(mode='none', log_level='DEBUG') setup_logger(self.module_kwargs.log_level) prepare_all_args( self.module_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, ) self.queues_and_events = initialize_queues_and_events() self.pipeline_manager = build_pipeline( self.module_kwargs, self.socket_receiver_kwargs, self.socket_sender_kwargs, self.vad_handler_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, self.queues_and_events, ) self.pipeline_manager.start() # Add a new queue for collecting the final output self.final_output_queue = Queue() self.sessions = {} # Store session information def _collect_output(self, session_id): while True: try: output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=2) if isinstance(output, (str, bytes)) and output in (b"END", "END"): self.sessions[session_id]['status'] = 'completed' break elif isinstance(output, np.ndarray): self.sessions[session_id]['chunks'].append(output.tobytes()) else: self.sessions[session_id]['chunks'].append(output) except Empty: self.sessions[session_id]['status'] = 'completed' break def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: request_type = data.get("request_type", "start") if request_type == "start": return self._handle_start_request(data) elif request_type == "continue": return self._handle_continue_request(data) else: raise ValueError(f"Unsupported request type: {request_type}") def _handle_start_request(self, data: Dict[str, Any]) -> Dict[str, Any]: session_id = str(uuid.uuid4()) self.sessions[session_id] = { 'status': 'processing', 'chunks': [], 'last_sent_index': 0 } input_type = data.get("input_type", "text") input_data = data.get("inputs", "") if input_type == "speech": audio_array = np.frombuffer(input_data, dtype=np.int16) self.queues_and_events['recv_audio_chunks_queue'].put(audio_array.tobytes()) elif input_type == "text": self.queues_and_events['text_prompt_queue'].put(input_data) else: raise ValueError(f"Unsupported input type: {input_type}") # Start output collection in a separate thread threading.Thread(target=self._collect_output, args=(session_id,)).start() return {"session_id": session_id, "status": "processing"} def _handle_continue_request(self, data: Dict[str, Any]) -> Dict[str, Any]: session_id = data.get("session_id") if not session_id or session_id not in self.sessions: raise ValueError("Invalid or missing session_id") session = self.sessions[session_id] chunks_to_send = session['chunks'][session['last_sent_index']:] session['last_sent_index'] = len(session['chunks']) if chunks_to_send: combined_audio = b''.join(chunks_to_send) base64_audio = base64.b64encode(combined_audio).decode('utf-8') return { "session_id": session_id, "status": session['status'], "output": base64_audio } else: return { "session_id": session_id, "status": session['status'], "output": None } def cleanup(self): # Stop the pipeline self.pipeline_manager.stop() # Stop the output collector thread self.queues_and_events['send_audio_chunks_queue'].put(b"END") self.output_collector_thread.join()