--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - mit_restaurant metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-ner-mit-restaurant results: - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant metric: name: Accuracy type: accuracy value: 0.9118988661540467 base_model: distilbert-base-uncased --- # distilbert-base-uncased-ner-mit-restaurant This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Precision: 0.7874 - Recall: 0.8104 - F1: 0.7988 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 431 | 0.4575 | 0.6220 | 0.6856 | 0.6523 | 0.8650 | | 1.1705 | 2.0 | 862 | 0.3183 | 0.7747 | 0.7953 | 0.7848 | 0.9071 | | 0.3254 | 3.0 | 1293 | 0.3163 | 0.7668 | 0.8021 | 0.7841 | 0.9058 | | 0.2287 | 4.0 | 1724 | 0.3097 | 0.7874 | 0.8104 | 0.7988 | 0.9119 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3