bert-large-uncased-ner

This model is a fine-tuned version of bert-large-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0591
  • Precision: 0.9465
  • Recall: 0.9568
  • F1: 0.9517
  • Accuracy: 0.9877

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1702 1.0 878 0.0578 0.9202 0.9347 0.9274 0.9836
0.0392 2.0 1756 0.0601 0.9306 0.9448 0.9377 0.9851
0.0157 3.0 2634 0.0517 0.9405 0.9544 0.9474 0.9875
0.0057 4.0 3512 0.0591 0.9465 0.9568 0.9517 0.9877

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.8.1+cu111
  • Datasets 1.8.0
  • Tokenizers 0.10.3
Downloads last month
14
Hosted inference API
Token Classification
This model can be loaded on the Inference API on-demand.