--- base_model: anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test tags: - generated_from_trainer metrics: - accuracy model-index: - name: PushToHubModel results: [] --- # PushToHubModel This model is a fine-tuned version of [anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test](https://huggingface.co/anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8947 - Accuracy: 0.6748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 250.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.92 | 3 | 1.5989 | 0.3427 | | No log | 1.85 | 6 | 1.5987 | 0.3427 | | No log | 2.77 | 9 | 1.5984 | 0.3427 | | No log | 4.0 | 13 | 1.5977 | 0.3427 | | No log | 4.92 | 16 | 1.5970 | 0.3427 | | No log | 5.85 | 19 | 1.5963 | 0.3392 | | No log | 6.77 | 22 | 1.5953 | 0.3357 | | No log | 8.0 | 26 | 1.5938 | 0.3287 | | No log | 8.92 | 29 | 1.5925 | 0.3217 | | No log | 9.85 | 32 | 1.5911 | 0.3147 | | No log | 10.77 | 35 | 1.5896 | 0.3112 | | No log | 12.0 | 39 | 1.5873 | 0.3042 | | No log | 12.92 | 42 | 1.5854 | 0.3007 | | No log | 13.85 | 45 | 1.5834 | 0.2972 | | No log | 14.77 | 48 | 1.5813 | 0.2832 | | 1.5878 | 16.0 | 52 | 1.5784 | 0.2727 | | 1.5878 | 16.92 | 55 | 1.5760 | 0.2727 | | 1.5878 | 17.85 | 58 | 1.5736 | 0.2692 | | 1.5878 | 18.77 | 61 | 1.5711 | 0.2517 | | 1.5878 | 20.0 | 65 | 1.5675 | 0.2378 | | 1.5878 | 20.92 | 68 | 1.5645 | 0.2343 | | 1.5878 | 21.85 | 71 | 1.5613 | 0.2238 | | 1.5878 | 22.77 | 74 | 1.5581 | 0.2273 | | 1.5878 | 24.0 | 78 | 1.5537 | 0.2273 | | 1.5878 | 24.92 | 81 | 1.5504 | 0.2273 | | 1.5878 | 25.85 | 84 | 1.5473 | 0.2273 | | 1.5878 | 26.77 | 87 | 1.5444 | 0.2273 | | 1.5878 | 28.0 | 91 | 1.5405 | 0.2273 | | 1.5878 | 28.92 | 94 | 1.5378 | 0.2273 | | 1.5878 | 29.85 | 97 | 1.5353 | 0.2273 | | 1.5185 | 30.77 | 100 | 1.5335 | 0.2273 | | 1.5185 | 32.0 | 104 | 1.5322 | 0.2273 | | 1.5185 | 32.92 | 107 | 1.5323 | 0.2273 | | 1.5185 | 33.85 | 110 | 1.5341 | 0.2273 | | 1.5185 | 34.77 | 113 | 1.5373 | 0.2273 | | 1.5185 | 36.0 | 117 | 1.5437 | 0.2273 | | 1.5185 | 36.92 | 120 | 1.5511 | 0.2273 | | 1.5185 | 37.85 | 123 | 1.5605 | 0.2273 | | 1.5185 | 38.77 | 126 | 1.5712 | 0.2273 | | 1.5185 | 40.0 | 130 | 1.5858 | 0.2273 | | 1.5185 | 40.92 | 133 | 1.5946 | 0.2273 | | 1.5185 | 41.85 | 136 | 1.6022 | 0.2273 | | 1.5185 | 42.77 | 139 | 1.6077 | 0.2273 | | 1.5185 | 44.0 | 143 | 1.6055 | 0.2308 | | 1.5185 | 44.92 | 146 | 1.5978 | 0.2238 | | 1.5185 | 45.85 | 149 | 1.5862 | 0.2413 | | 1.3621 | 46.77 | 152 | 1.5746 | 0.2692 | | 1.3621 | 48.0 | 156 | 1.5576 | 0.2657 | | 1.3621 | 48.92 | 159 | 1.5446 | 0.2867 | | 1.3621 | 49.85 | 162 | 1.5347 | 0.3007 | | 1.3621 | 50.77 | 165 | 1.5267 | 0.3182 | | 1.3621 | 52.0 | 169 | 1.5192 | 0.3322 | | 1.3621 | 52.92 | 172 | 1.5158 | 0.3357 | | 1.3621 | 53.85 | 175 | 1.5128 | 0.3392 | | 1.3621 | 54.77 | 178 | 1.5093 | 0.3427 | | 1.3621 | 56.0 | 182 | 1.5042 | 0.3462 | | 1.3621 | 56.92 | 185 | 1.4979 | 0.3531 | | 1.3621 | 57.85 | 188 | 1.4927 | 0.3566 | | 1.3621 | 58.77 | 191 | 1.4858 | 0.3601 | | 1.3621 | 60.0 | 195 | 1.4790 | 0.3706 | | 1.3621 | 60.92 | 198 | 1.4717 | 0.3741 | | 1.2297 | 61.85 | 201 | 1.4674 | 0.3846 | | 1.2297 | 62.77 | 204 | 1.4588 | 0.3881 | | 1.2297 | 64.0 | 208 | 1.4482 | 0.4021 | | 1.2297 | 64.92 | 211 | 1.4374 | 0.4161 | | 1.2297 | 65.85 | 214 | 1.4255 | 0.4231 | | 1.2297 | 66.77 | 217 | 1.4126 | 0.4336 | | 1.2297 | 68.0 | 221 | 1.4000 | 0.4371 | | 1.2297 | 68.92 | 224 | 1.3919 | 0.4371 | | 1.2297 | 69.85 | 227 | 1.3865 | 0.4406 | | 1.2297 | 70.77 | 230 | 1.3836 | 0.4441 | | 1.2297 | 72.0 | 234 | 1.3742 | 0.4441 | | 1.2297 | 72.92 | 237 | 1.3636 | 0.4476 | | 1.2297 | 73.85 | 240 | 1.3518 | 0.4580 | | 1.2297 | 74.77 | 243 | 1.3429 | 0.4685 | | 1.2297 | 76.0 | 247 | 1.3334 | 0.4825 | | 1.1141 | 76.92 | 250 | 1.3253 | 0.4860 | | 1.1141 | 77.85 | 253 | 1.3172 | 0.4860 | | 1.1141 | 78.77 | 256 | 1.3118 | 0.4825 | | 1.1141 | 80.0 | 260 | 1.3054 | 0.4790 | | 1.1141 | 80.92 | 263 | 1.2986 | 0.4790 | | 1.1141 | 81.85 | 266 | 1.2907 | 0.4790 | | 1.1141 | 82.77 | 269 | 1.2791 | 0.4860 | | 1.1141 | 84.0 | 273 | 1.2688 | 0.4860 | | 1.1141 | 84.92 | 276 | 1.2623 | 0.4895 | | 1.1141 | 85.85 | 279 | 1.2557 | 0.4930 | | 1.1141 | 86.77 | 282 | 1.2547 | 0.5 | | 1.1141 | 88.0 | 286 | 1.2539 | 0.5070 | | 1.1141 | 88.92 | 289 | 1.2504 | 0.5070 | | 1.1141 | 89.85 | 292 | 1.2435 | 0.5070 | | 1.1141 | 90.77 | 295 | 1.2374 | 0.5070 | | 1.1141 | 92.0 | 299 | 1.2278 | 0.5140 | | 1.0055 | 92.92 | 302 | 1.2204 | 0.5210 | | 1.0055 | 93.85 | 305 | 1.2155 | 0.5210 | | 1.0055 | 94.77 | 308 | 1.2131 | 0.5210 | | 1.0055 | 96.0 | 312 | 1.2082 | 0.5280 | | 1.0055 | 96.92 | 315 | 1.2022 | 0.5350 | | 1.0055 | 97.85 | 318 | 1.1926 | 0.5350 | | 1.0055 | 98.77 | 321 | 1.1854 | 0.5420 | | 1.0055 | 100.0 | 325 | 1.1779 | 0.5455 | | 1.0055 | 100.92 | 328 | 1.1747 | 0.5490 | | 1.0055 | 101.85 | 331 | 1.1715 | 0.5490 | | 1.0055 | 102.77 | 334 | 1.1681 | 0.5490 | | 1.0055 | 104.0 | 338 | 1.1552 | 0.5524 | | 1.0055 | 104.92 | 341 | 1.1457 | 0.5594 | | 1.0055 | 105.85 | 344 | 1.1385 | 0.5629 | | 1.0055 | 106.77 | 347 | 1.1312 | 0.5699 | | 0.9214 | 108.0 | 351 | 1.1231 | 0.5769 | | 0.9214 | 108.92 | 354 | 1.1204 | 0.5804 | | 0.9214 | 109.85 | 357 | 1.1177 | 0.5769 | | 0.9214 | 110.77 | 360 | 1.1143 | 0.5804 | | 0.9214 | 112.0 | 364 | 1.1112 | 0.5769 | | 0.9214 | 112.92 | 367 | 1.1073 | 0.5944 | | 0.9214 | 113.85 | 370 | 1.1025 | 0.5944 | | 0.9214 | 114.77 | 373 | 1.0935 | 0.6049 | | 0.9214 | 116.0 | 377 | 1.0794 | 0.6049 | | 0.9214 | 116.92 | 380 | 1.0689 | 0.6084 | | 0.9214 | 117.85 | 383 | 1.0585 | 0.6189 | | 0.9214 | 118.77 | 386 | 1.0515 | 0.6259 | | 0.9214 | 120.0 | 390 | 1.0456 | 0.6189 | | 0.9214 | 120.92 | 393 | 1.0421 | 0.6189 | | 0.9214 | 121.85 | 396 | 1.0393 | 0.6189 | | 0.9214 | 122.77 | 399 | 1.0351 | 0.6189 | | 0.8358 | 124.0 | 403 | 1.0309 | 0.6189 | | 0.8358 | 124.92 | 406 | 1.0282 | 0.6189 | | 0.8358 | 125.85 | 409 | 1.0239 | 0.6189 | | 0.8358 | 126.77 | 412 | 1.0165 | 0.6259 | | 0.8358 | 128.0 | 416 | 1.0052 | 0.6294 | | 0.8358 | 128.92 | 419 | 0.9978 | 0.6329 | | 0.8358 | 129.85 | 422 | 0.9944 | 0.6399 | | 0.8358 | 130.77 | 425 | 0.9936 | 0.6399 | | 0.8358 | 132.0 | 429 | 0.9909 | 0.6399 | | 0.8358 | 132.92 | 432 | 0.9893 | 0.6434 | | 0.8358 | 133.85 | 435 | 0.9849 | 0.6469 | | 0.8358 | 134.77 | 438 | 0.9814 | 0.6469 | | 0.8358 | 136.0 | 442 | 0.9776 | 0.6434 | | 0.8358 | 136.92 | 445 | 0.9732 | 0.6503 | | 0.8358 | 137.85 | 448 | 0.9680 | 0.6503 | | 0.773 | 138.77 | 451 | 0.9665 | 0.6503 | | 0.773 | 140.0 | 455 | 0.9641 | 0.6503 | | 0.773 | 140.92 | 458 | 0.9629 | 0.6538 | | 0.773 | 141.85 | 461 | 0.9600 | 0.6538 | | 0.773 | 142.77 | 464 | 0.9584 | 0.6503 | | 0.773 | 144.0 | 468 | 0.9512 | 0.6538 | | 0.773 | 144.92 | 471 | 0.9475 | 0.6538 | | 0.773 | 145.85 | 474 | 0.9492 | 0.6538 | | 0.773 | 146.77 | 477 | 0.9511 | 0.6573 | | 0.773 | 148.0 | 481 | 0.9548 | 0.6608 | | 0.773 | 148.92 | 484 | 0.9539 | 0.6573 | | 0.773 | 149.85 | 487 | 0.9493 | 0.6678 | | 0.773 | 150.77 | 490 | 0.9428 | 0.6678 | | 0.773 | 152.0 | 494 | 0.9381 | 0.6643 | | 0.773 | 152.92 | 497 | 0.9356 | 0.6643 | | 0.7252 | 153.85 | 500 | 0.9317 | 0.6643 | | 0.7252 | 154.77 | 503 | 0.9293 | 0.6643 | | 0.7252 | 156.0 | 507 | 0.9327 | 0.6678 | | 0.7252 | 156.92 | 510 | 0.9338 | 0.6678 | | 0.7252 | 157.85 | 513 | 0.9341 | 0.6643 | | 0.7252 | 158.77 | 516 | 0.9338 | 0.6643 | | 0.7252 | 160.0 | 520 | 0.9282 | 0.6643 | | 0.7252 | 160.92 | 523 | 0.9234 | 0.6678 | | 0.7252 | 161.85 | 526 | 0.9192 | 0.6678 | | 0.7252 | 162.77 | 529 | 0.9182 | 0.6678 | | 0.7252 | 164.0 | 533 | 0.9217 | 0.6678 | | 0.7252 | 164.92 | 536 | 0.9230 | 0.6643 | | 0.7252 | 165.85 | 539 | 0.9247 | 0.6678 | | 0.7252 | 166.77 | 542 | 0.9255 | 0.6713 | | 0.7252 | 168.0 | 546 | 0.9225 | 0.6713 | | 0.7252 | 168.92 | 549 | 0.9201 | 0.6713 | | 0.697 | 169.85 | 552 | 0.9186 | 0.6678 | | 0.697 | 170.77 | 555 | 0.9153 | 0.6678 | | 0.697 | 172.0 | 559 | 0.9132 | 0.6713 | | 0.697 | 172.92 | 562 | 0.9127 | 0.6713 | | 0.697 | 173.85 | 565 | 0.9122 | 0.6713 | | 0.697 | 174.77 | 568 | 0.9141 | 0.6713 | | 0.697 | 176.0 | 572 | 0.9148 | 0.6713 | | 0.697 | 176.92 | 575 | 0.9140 | 0.6713 | | 0.697 | 177.85 | 578 | 0.9140 | 0.6713 | | 0.697 | 178.77 | 581 | 0.9127 | 0.6713 | | 0.697 | 180.0 | 585 | 0.9130 | 0.6748 | | 0.697 | 180.92 | 588 | 0.9104 | 0.6748 | | 0.697 | 181.85 | 591 | 0.9088 | 0.6748 | | 0.697 | 182.77 | 594 | 0.9052 | 0.6748 | | 0.697 | 184.0 | 598 | 0.9011 | 0.6748 | | 0.6822 | 184.92 | 601 | 0.8989 | 0.6748 | | 0.6822 | 185.85 | 604 | 0.8974 | 0.6748 | | 0.6822 | 186.77 | 607 | 0.8963 | 0.6748 | | 0.6822 | 188.0 | 611 | 0.8967 | 0.6748 | | 0.6822 | 188.92 | 614 | 0.8982 | 0.6748 | | 0.6822 | 189.85 | 617 | 0.9005 | 0.6748 | | 0.6822 | 190.77 | 620 | 0.9020 | 0.6748 | | 0.6822 | 192.0 | 624 | 0.9018 | 0.6748 | | 0.6822 | 192.92 | 627 | 0.9009 | 0.6748 | | 0.6822 | 193.85 | 630 | 0.9002 | 0.6748 | | 0.6822 | 194.77 | 633 | 0.8995 | 0.6748 | | 0.6822 | 196.0 | 637 | 0.8988 | 0.6748 | | 0.6822 | 196.92 | 640 | 0.8973 | 0.6748 | | 0.6822 | 197.85 | 643 | 0.8967 | 0.6748 | | 0.6822 | 198.77 | 646 | 0.8970 | 0.6748 | | 0.6578 | 200.0 | 650 | 0.8954 | 0.6748 | | 0.6578 | 200.92 | 653 | 0.8951 | 0.6748 | | 0.6578 | 201.85 | 656 | 0.8945 | 0.6748 | | 0.6578 | 202.77 | 659 | 0.8946 | 0.6748 | | 0.6578 | 204.0 | 663 | 0.8944 | 0.6748 | | 0.6578 | 204.92 | 666 | 0.8950 | 0.6748 | | 0.6578 | 205.85 | 669 | 0.8960 | 0.6748 | | 0.6578 | 206.77 | 672 | 0.8969 | 0.6748 | | 0.6578 | 208.0 | 676 | 0.8992 | 0.6748 | | 0.6578 | 208.92 | 679 | 0.8995 | 0.6748 | | 0.6578 | 209.85 | 682 | 0.8992 | 0.6748 | | 0.6578 | 210.77 | 685 | 0.8990 | 0.6748 | | 0.6578 | 212.0 | 689 | 0.8986 | 0.6748 | | 0.6578 | 212.92 | 692 | 0.8984 | 0.6748 | | 0.6578 | 213.85 | 695 | 0.8981 | 0.6748 | | 0.6578 | 214.77 | 698 | 0.8979 | 0.6748 | | 0.6633 | 216.0 | 702 | 0.8977 | 0.6748 | | 0.6633 | 216.92 | 705 | 0.8973 | 0.6748 | | 0.6633 | 217.85 | 708 | 0.8968 | 0.6748 | | 0.6633 | 218.77 | 711 | 0.8963 | 0.6748 | | 0.6633 | 220.0 | 715 | 0.8957 | 0.6748 | | 0.6633 | 220.92 | 718 | 0.8955 | 0.6748 | | 0.6633 | 221.85 | 721 | 0.8952 | 0.6748 | | 0.6633 | 222.77 | 724 | 0.8954 | 0.6748 | | 0.6633 | 224.0 | 728 | 0.8953 | 0.6748 | | 0.6633 | 224.92 | 731 | 0.8952 | 0.6748 | | 0.6633 | 225.85 | 734 | 0.8952 | 0.6748 | | 0.6633 | 226.77 | 737 | 0.8951 | 0.6748 | | 0.6633 | 228.0 | 741 | 0.8949 | 0.6748 | | 0.6633 | 228.92 | 744 | 0.8948 | 0.6748 | | 0.6633 | 229.85 | 747 | 0.8948 | 0.6748 | | 0.6693 | 230.77 | 750 | 0.8947 | 0.6748 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2