File size: 14,388 Bytes
52174c3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f941b526820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f941b5268b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f941b526940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f941b5269d0>", "_build": "<function ActorCriticPolicy._build at 0x7f941b526a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f941b526af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f941b526b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f941b526c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f941b526ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f941b526d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f941b526dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f941b526e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f941b521870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673538915940135007, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOxELwkgY8+JkeAvN2ej77tc4+8KakMPAAAAAAAAAAAJjyQvVyDfLq32EA2i1QSMZM+grrDiWi1AACAPwAAgD+68wO+8glFPhSzOD6dk0u+6dnqPPoOlb0AAAAAAAAAADNBWj0plDG8A66gPJEyHz1jZaC9YkH+PQAAgD8AAIA/gAEWvfI8oT++8GG+tGn1vqpBBby/J7O9AAAAAAAAAAAzxbY8SA+BuqZr1jZVVcMxdYs5O+3Z/LUAAIA/AACAP81T0j2/UEs/XZqqvUXfk77OkcI9UTeyvQAAAAAAAAAAzbuDPTqzjD8zd00+vU36vrPpKz6ou1C9AAAAAAAAAADN/L+9RvqDPuos4j2P70q+Tzb8PO6SRD0AAAAAAAAAAJqmfz2cPB283ssVPRkhfDxjuYi9PUhSPQAAgD8AAIA/BqlbvrZUFD/8jUS878+zvgHOC74s3D8+AAAAAAAAAACa3UI9wwFSuu7F57VmVBiwy5Bgu0T/DjUAAIA/AACAP2YphryfasS7aywfPD+5rTxKkh09PqyRvQAAgD8AAIA/M7uKvLjK8TxaGI4+OYv9ve5YmD3LLVE8AAAAAAAAAACAeDM9FDSsumviKrgRVR2z5cvHORW7QzcAAIA/AACAP7M7Lj34R6E8ShiTPdKEB774HIu8SzE4vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRaFl3f9gcUCUhpRSlIwBbJRNKQGMAXSUR0CXJnSU1Q67dX2UKGgGaAloD0MIBvGBHX9nckCUhpRSlGgVTQ0BaBZHQJc6Vf4REnd1fZQoaAZoCWgPQwhDN/sDpSZyQJSGlFKUaBVNHgFoFkdAlzp/Tw2ETXV9lChoBmgJaA9DCFXejnAaFHBAlIaUUpRoFU0YAWgWR0CXPUNSqEOBdX2UKGgGaAloD0MIO+C6Yob6cUCUhpRSlGgVTRsBaBZHQJc9/5mAbyZ1fZQoaAZoCWgPQwiA8+LE1/9wQJSGlFKUaBVNHQFoFkdAl0GUPMB6r3V9lChoBmgJaA9DCPPixFc7L29AlIaUUpRoFU0YAWgWR0CXQf31BdD6dX2UKGgGaAloD0MIr5Y7M0HccECUhpRSlGgVTS0BaBZHQJdCX9deIEd1fZQoaAZoCWgPQwgKur2ksUhwQJSGlFKUaBVNOwJoFkdAl0KUZvUBn3V9lChoBmgJaA9DCNYBEHd1u21AlIaUUpRoFU0CAWgWR0CXQqbBoEjgdX2UKGgGaAloD0MITkcAN8uJcECUhpRSlGgVTQgBaBZHQJdC1pZfUnZ1fZQoaAZoCWgPQwh/oUeMXtdyQJSGlFKUaBVNMgFoFkdAl0LmDQJHAnV9lChoBmgJaA9DCCZUcHjBlXBAlIaUUpRoFU0QAWgWR0CXQytQ9A5adX2UKGgGaAloD0MIp3Sw/g9fcUCUhpRSlGgVTSIBaBZHQJdEDq9oN/h1fZQoaAZoCWgPQwjXaaSl8oRyQJSGlFKUaBVNiAFoFkdAl0Sfm9xp+XV9lChoBmgJaA9DCLA5B89EW3JAlIaUUpRoFU0iAWgWR0CXRLg2qDK6dX2UKGgGaAloD0MIA7ABEWIlc0CUhpRSlGgVTT8BaBZHQJdFY6eXiR51fZQoaAZoCWgPQwjjbaXX5v1uQJSGlFKUaBVNIgFoFkdAl0fNjLB9C3V9lChoBmgJaA9DCH6MuWuJG21AlIaUUpRoFU0PAWgWR0CXR9wyqMm4dX2UKGgGaAloD0MIu9bep6pBbUCUhpRSlGgVTRMBaBZHQJdLoGRmseZ1fZQoaAZoCWgPQwiPjNXmP3dxQJSGlFKUaBVNDwFoFkdAl0yTaPCEYnV9lChoBmgJaA9DCFUS2QdZqHBAlIaUUpRoFU0NAWgWR0CXTJREnb7CdX2UKGgGaAloD0MIJQaBlYPMcECUhpRSlGgVTSUBaBZHQJdM9O58Sf11fZQoaAZoCWgPQwiTOZZ31dFtQJSGlFKUaBVNHwFoFkdAl00Vsk6cRXV9lChoBmgJaA9DCPfN/dUjO3BAlIaUUpRoFU0OAWgWR0CXTUBfrrxBdX2UKGgGaAloD0MIkDAMWPIKb0CUhpRSlGgVTS8BaBZHQJdONsvZh8Z1fZQoaAZoCWgPQwjPhvwzgzZyQJSGlFKUaBVNTwFoFkdAl0+v/JeVs3V9lChoBmgJaA9DCL8Qct6/1XBAlIaUUpRoFU08AWgWR0CXUE83dbgTdX2UKGgGaAloD0MI5NcPsYEtckCUhpRSlGgVTS8BaBZHQJdRl3HJcPh1fZQoaAZoCWgPQwgsRfKVwHdwQJSGlFKUaBVNTQFoFkdAl1HhXjlxO3V9lChoBmgJaA9DCD51rFL6gHJAlIaUUpRoFU0OAWgWR0CXUx3aBZp0dX2UKGgGaAloD0MIfEeNCfG+cECUhpRSlGgVTSUBaBZHQJdT/8tPHkt1fZQoaAZoCWgPQwix/WSMD/dvQJSGlFKUaBVN3QFoFkdAl1eAq7ROUXV9lChoBmgJaA9DCET8w5ae12VAlIaUUpRoFU3oA2gWR0CXV6hvR7Z4dX2UKGgGaAloD0MIu16aIsAhc0CUhpRSlGgVTSgBaBZHQJdX4crAgxJ1fZQoaAZoCWgPQwjkTX6LTphtQJSGlFKUaBVNJQFoFkdAl1h2EPDpDHV9lChoBmgJaA9DCMO2RZkNh29AlIaUUpRoFU0vAWgWR0CXWUK1XvH+dX2UKGgGaAloD0MIuJTzxd7lbkCUhpRSlGgVTRQBaBZHQJdZUaESM991fZQoaAZoCWgPQwgVWABTxn5yQJSGlFKUaBVNOAFoFkdAl1l9To+wDHV9lChoBmgJaA9DCEsfuqD++nFAlIaUUpRoFU1CAWgWR0CXWYrilzltdX2UKGgGaAloD0MITDYebLHdcECUhpRSlGgVTUEBaBZHQJdZ9gPVd5Z1fZQoaAZoCWgPQwjt8UI6vAFwQJSGlFKUaBVNNAFoFkdAl1tj6BRQ8HV9lChoBmgJaA9DCAx5BDeSaHBAlIaUUpRoFU0yAWgWR0CXW+e5nUUgdX2UKGgGaAloD0MIIojzcMIeckCUhpRSlGgVTRQBaBZHQJdb8D7qIJt1fZQoaAZoCWgPQwihvfp46BRoQJSGlFKUaBVN6ANoFkdAl1wufZmI03V9lChoBmgJaA9DCDNwQEuXD3JAlIaUUpRoFU0XAWgWR0CXXQvuw5eadX2UKGgGaAloD0MIE/OspBWLckCUhpRSlGgVTUwBaBZHQJddjdznzQN1fZQoaAZoCWgPQwiDa+7o/65yQJSGlFKUaBVNGQFoFkdAl12k4Nqgy3V9lChoBmgJaA9DCKVPq+gPTnNAlIaUUpRoFU0CAWgWR0CXcsSAYpDvdX2UKGgGaAloD0MI+5KNB9ueckCUhpRSlGgVTQoBaBZHQJdzLhDPWx11fZQoaAZoCWgPQwghIjXt4tNwQJSGlFKUaBVNMQFoFkdAl3QramGdqnV9lChoBmgJaA9DCG5Nui2RbHBAlIaUUpRoFU0PAWgWR0CXdMZH/cWTdX2UKGgGaAloD0MIKQge315MckCUhpRSlGgVTTMBaBZHQJd1xD3M6il1fZQoaAZoCWgPQwhod0gxwBpxQJSGlFKUaBVNLgFoFkdAl3XfmHP/rHV9lChoBmgJaA9DCB6M2CcAL3BAlIaUUpRoFU0+AWgWR0CXditHhCMQdX2UKGgGaAloD0MIRbjJqDKLb0CUhpRSlGgVTVwBaBZHQJd2Z3/xUed1fZQoaAZoCWgPQwhhbYydMHdwQJSGlFKUaBVNPwFoFkdAl3bQJ5VwP3V9lChoBmgJaA9DCAppjUEnV3FAlIaUUpRoFU0UAWgWR0CXdz9l2/zrdX2UKGgGaAloD0MIwlCHFS7ZckCUhpRSlGgVTSkBaBZHQJd3cR5C4SZ1fZQoaAZoCWgPQwhUOlj/J6RyQJSGlFKUaBVNIgFoFkdAl3fjCUHIIXV9lChoBmgJaA9DCFQB9zz/nm9AlIaUUpRoFU0yAWgWR0CXeBKneiztdX2UKGgGaAloD0MIZd8VwX8yckCUhpRSlGgVTQsBaBZHQJd4LXiBGx51fZQoaAZoCWgPQwhk6NhBJUJsQJSGlFKUaBVNPQFoFkdAl3oUtRNypHV9lChoBmgJaA9DCM+hDFWxOW9AlIaUUpRoFU0UAWgWR0CXevN8E3bVdX2UKGgGaAloD0MIC0J5H8fbbUCUhpRSlGgVTVkBaBZHQJd7BPXTVlR1fZQoaAZoCWgPQwgXgbG+wdBwQJSGlFKUaBVNFgFoFkdAl3tpVOsT4HV9lChoBmgJaA9DCASQ2sQJYHFAlIaUUpRoFU0dAWgWR0CXfmWLgn+idX2UKGgGaAloD0MI+Db92Q/IckCUhpRSlGgVTSMBaBZHQJd/U/KQq7R1fZQoaAZoCWgPQwgfEVMiCedvQJSGlFKUaBVNVgFoFkdAl39fVd5Y5nV9lChoBmgJaA9DCAZ/v5gtLHBAlIaUUpRoFU00AWgWR0CXf6jyFwkxdX2UKGgGaAloD0MImPp5U9EDcUCUhpRSlGgVTUMBaBZHQJd/wj5bhWJ1fZQoaAZoCWgPQwhlVBnGnYVwQJSGlFKUaBVNIgFoFkdAl4BEu+RHPXV9lChoBmgJaA9DCO3yrQ9rAG5AlIaUUpRoFU0iAWgWR0CXgIEqDsdDdX2UKGgGaAloD0MITbuYZjqJbUCUhpRSlGgVTUEBaBZHQJeAvQkX1rZ1fZQoaAZoCWgPQwhOf/YjhahxQJSGlFKUaBVNIgFoFkdAl4EuXNTtLXV9lChoBmgJaA9DCEYkCi1rXGxAlIaUUpRoFU02AWgWR0CXgelt0mtydX2UKGgGaAloD0MIYYpyaTx5cUCUhpRSlGgVTVIBaBZHQJeCZTho/Rp1fZQoaAZoCWgPQwgpXfqXJK5yQJSGlFKUaBVNEAFoFkdAl4O5Bw++unV9lChoBmgJaA9DCC48LxXbi3JAlIaUUpRoFU0xAWgWR0CXg8dAPd2xdX2UKGgGaAloD0MIaXOc24Q4cUCUhpRSlGgVTSUBaBZHQJeEOvvBrN51fZQoaAZoCWgPQwjXhR+cj5tyQJSGlFKUaBVNKAFoFkdAl4S/XXiBG3V9lChoBmgJaA9DCN0Gtd8a3XFAlIaUUpRoFU1YAmgWR0CXhqPcBU70dX2UKGgGaAloD0MIVBuciD5fcECUhpRSlGgVTQIBaBZHQJeIiCkGiYd1fZQoaAZoCWgPQwiYMnBAy91wQJSGlFKUaBVL+mgWR0CXiNZfD1oQdX2UKGgGaAloD0MIVObmG9HDbkCUhpRSlGgVTRoBaBZHQJeI1nbqQil1fZQoaAZoCWgPQwhsXWqEfuBvQJSGlFKUaBVNKAFoFkdAl4jrWEsasXV9lChoBmgJaA9DCD5anDEMtnJAlIaUUpRoFU0/AWgWR0CXicCSzPa+dX2UKGgGaAloD0MIWFUvv5PGcECUhpRSlGgVTUIBaBZHQJeKIcWCVbB1fZQoaAZoCWgPQwgmHHqLh5dxQJSGlFKUaBVNZgFoFkdAl4o+6ErXlXV9lChoBmgJaA9DCCbfbHMjPnFAlIaUUpRoFU0eAWgWR0CXio69CeEqdX2UKGgGaAloD0MI8DFYcarMcECUhpRSlGgVTTgBaBZHQJeKnKs+3Yt1fZQoaAZoCWgPQwg7inPU0edsQJSGlFKUaBVNCwFoFkdAl4quy3Td+HV9lChoBmgJaA9DCI1eDVCayW5AlIaUUpRoFU0RAWgWR0CXizT8pCrtdX2UKGgGaAloD0MIdm9FYgIdbUCUhpRSlGgVTRgBaBZHQJeMshQm/nJ1fZQoaAZoCWgPQwhg5GVNrAhvQJSGlFKUaBVNFAFoFkdAl40SmIj4YnV9lChoBmgJaA9DCArzHmcaknFAlIaUUpRoFU0vAWgWR0CXjUghKUV0dX2UKGgGaAloD0MI1PGYgcpMckCUhpRSlGgVTUABaBZHQJeOyyiVSoB1fZQoaAZoCWgPQwhtkElGzpNvQJSGlFKUaBVNEQFoFkdAl48PTPSlWXV9lChoBmgJaA9DCLHeqBWmUmxAlIaUUpRoFU0QAWgWR0CXkLmvnr6ddX2UKGgGaAloD0MI6IL6ljn6cECUhpRSlGgVTSEBaBZHQJeRVOARTS91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}