--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: analys/distilbert-base-uncased-finetuned-ner results: [] --- # analys/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0335 - Validation Loss: 0.0603 - Train Precision: 0.9219 - Train Recall: 0.9361 - Train F1: 0.9290 - Train Accuracy: 0.9833 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1940 | 0.0711 | 0.8980 | 0.9167 | 0.9072 | 0.9795 | 0 | | 0.0546 | 0.0613 | 0.9107 | 0.9303 | 0.9204 | 0.9822 | 1 | | 0.0335 | 0.0603 | 0.9219 | 0.9361 | 0.9290 | 0.9833 | 2 | ### Framework versions - Transformers 4.37.2 - TensorFlow 2.15.0 - Datasets 2.17.1 - Tokenizers 0.15.2