{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc39c26f930>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676232244371867168, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN8GW7763DU/lGzXPi1DDT+ZvjO+dMPovzS3qb7beIW9Bbpuv3p2IMAMZTy8con7P6B1+zz9tpy/WRPyPjAN379IUYI/SDSZv3O/ED9I+Vc8QSpWv3uMkDzvXCa9hqQvwHcSh7+2FgY/7n7Xv2BwdL8WJiw/HPnYPoDrBj8cfSw/xc0Vvj6oDsBpTSC/WpFjvzHAOr1SeeG/biWHv0jaV8DJh0G/0ZDJPZcCFj4HuIc+bIPBvtunpT+v60q+GbUPwNYJlj4ShT8/qVWAP96WDEB3Eoe/thYGPwIPGD9gcHS/LntUP3vhDT+lhPk+zpO2P0r11T8/eFU/J7WTPmVMZL1+fDE+pG2FP2Y5gr9xi/E+pw6FvUM96D/wIlO/SXwLPx5VpD99ppK8T1XyvmlglT9BKlW/OhYoPp+gOj9RA869dxKHv7YWBj/ufte/zQ2GPzaF9z/YzUG/pJF+PqNOt79k7Da/FaJfv3TN8T5DnLM/rAUCwAj52j9Csg9AmCYrPmjJ4j+ECEG/mqELvxhG4UA/AKQ/wBcRvCs7+L9fQKq/wj0mvxbOiD8XUnA/rw7aP6eYcj8hYPS/7n7Xv80Nhj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADszrs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAggqDuwAAAABSwea/AAAAANNMlz0AAAAAnTXbPwAAAAA+ZQw9AAAAABnN4j8AAAAAmqUJvgAAAAA4PAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0YSONgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKT5wzwAAAAAbC3jvwAAAAAlQZk7AAAAAGuSAEAAAAAAd40FPgAAAAAEud8/AAAAANDror0AAAAAL0D+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjOsDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVzKm9AAAAAJgB/r8AAAAATrRxPQAAAAD6rd4/AAAAABsOEL4AAAAAgZn8PwAAAABM+G+9AAAAAObL8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8PKg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2FIJvgAAAADTkey/AAAAAFvEhrwAAAAAvw3ePwAAAADvVuQ9AAAAAOah5T8AAAAA+PaDPAAAAAD3R+q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrZ9LIxQBSMAWyUTegDjAF0lEdAq5JlcD8tPHV9lChoBkdAlA3U4//vOWgHTegDaAhHQKuZHshPj4p1fZQoaAZHQJpCG2JBPbhoB03oA2gIR0CrnNDKHO8kdX2UKGgGR0CZs2rn1WbPaAdN6ANoCEdAq536D/VAiXV9lChoBkdAmAY8KXv6TGgHTegDaAhHQKue28YAKfF1fZQoaAZHQJZrvfGdZq5oB03oA2gIR0CrqUfa6BiDdX2UKGgGR0CZGbSH/LkkaAdN6ANoCEdAq60ZEH+qBHV9lChoBkdAkfsJGz8gp2gHTegDaAhHQKuuVrkbPyF1fZQoaAZHQIhcPXsgMc9oB03oA2gIR0CrrzyFoL5RdX2UKGgGR0Ca4SQLNOdoaAdN6ANoCEdAq7X08ifQKXV9lChoBkdAnSJxdyDIzWgHTegDaAhHQKu5vu/k/8l1fZQoaAZHQJzdDAJswcpoB03oA2gIR0Cruu09yLhrdX2UKGgGR0Cgs6HU2DQJaAdN6ANoCEdAq7vOtr9ETnV9lChoBkdAnu7FFpfx+mgHTegDaAhHQKvGI85CF9N1fZQoaAZHQJyXDn7pFCtoB03oA2gIR0Cryg/xDst1dX2UKGgGR0CfiO3N9ph4aAdN6ANoCEdAq8s4zrNW2nV9lChoBkdAnnczriVB2WgHTegDaAhHQKvMJ0lJHy51fZQoaAZHQJsSO5rgwXZoB03oA2gIR0Cr0s+CTUy6dX2UKGgGR0CdrbZHuqm1aAdN6ANoCEdAq9ZrsKLKm3V9lChoBkdAnthzKT0QLGgHTegDaAhHQKvXh9pAUtZ1fZQoaAZHQJvcDdGiHqNoB03oA2gIR0Cr2F7jDKoydX2UKGgGR0CeP+xOclPaaAdN6ANoCEdAq+E7Ddgv13V9lChoBkdAnx9q7dznzWgHTegDaAhHQKvmN89fTkR1fZQoaAZHQJ0QA5T6zmhoB03oA2gIR0Cr52aVdHDrdX2UKGgGR0CenoyzXz19aAdN6ANoCEdAq+hJFTefqXV9lChoBkdAlHfu+h4+r2gHTegDaAhHQKvu+zpHI6t1fZQoaAZHQKABsQ3gk1NoB03oA2gIR0Cr8rRkEs8QdX2UKGgGR0CgfirftQbdaAdN6ANoCEdAq/PhFd9lVnV9lChoBkdAnAL9tqHoHWgHTegDaAhHQKv0u5nUUfx1fZQoaAZHQJlyTmJWNm1oB03oA2gIR0Cr/RarNnoQdX2UKGgGR0CdcGhf0EowaAdN6ANoCEdArALHT1CgLHV9lChoBkdAnC9b+tKZlWgHTegDaAhHQKwD/8F6iTN1fZQoaAZHQKDAzHvttyhoB03oA2gIR0CsBN1E/jbSdX2UKGgGR0CcGbQTEit8aAdN6ANoCEdArAus8HObAnV9lChoBkdAkLisynDR+mgHTegDaAhHQKwPgOBDohZ1fZQoaAZHQJM9mf6GgzxoB03oA2gIR0CsEKnP/rB1dX2UKGgGR0CfAOP5YYBOaAdN6ANoCEdArBGGMfigkHV9lChoBkdAnaq2VNYbKmgHTegDaAhHQKwZGoMrmQt1fZQoaAZHQJ0qogLZzxRoB03oA2gIR0CsHyGYKIBSdX2UKGgGR0CT0BCK77KraAdN6ANoCEdArCCfAoG6gHV9lChoBkdAnEL0qpcX32gHTegDaAhHQKwhdfeDWbx1fZQoaAZHQJGY0ehf0EpoB03oA2gIR0CsJ/FlkH2RdX2UKGgGR0CR9T9r433paAdN6ANoCEdArCvCfYjB23V9lChoBkdAnGcDzqbBoGgHTegDaAhHQKws8FlkH2R1fZQoaAZHQJfNcQumJnBoB03oA2gIR0CsLcTE74i5dX2UKGgGR0CV9T04R28qaAdN6ANoCEdArDUp/G2kSHV9lChoBkdAnG3HJcPe6GgHTegDaAhHQKw7TQbdadN1fZQoaAZHQJjccC6pYLdoB03oA2gIR0CsPU5/CqIadX2UKGgGR0CW1zK02LpBaAdN6ANoCEdArD5ajafzz3V9lChoBkdAl80OZgG8mWgHTegDaAhHQKxE2NayKN11fZQoaAZHQJ5Oe2TgVGloB03oA2gIR0CsSItSAH3UdX2UKGgGR0CadqYxtYSyaAdN6ANoCEdArEnFRtP56HV9lChoBkdAnXv2ixmkFmgHTegDaAhHQKxKnQkX1rZ1fZQoaAZHQEXldznzQNVoB0uYaAhHQKxMexqO9391fZQoaAZHQJyFZY+0PYpoB03oA2gIR0CsUSE690zTdX2UKGgGR0Cd0ED+zdDZaAdN6ANoCEdArFaGKfnOjnV9lChoBkdAmZQ+bZvkzWgHTegDaAhHQKxYix4Y77t1fZQoaAZHQJmGb5DZ13doB03oA2gIR0CsXH1KoQ4CdX2UKGgGR0BSEDMFEAo5aAdLfGgIR0CsXgzt9hJAdX2UKGgGR0CWgqXSSeRQaAdN6ANoCEdArGFIIa99MXV9lChoBkdAmFD7ZamoBWgHTegDaAhHQKxlDH93r2R1fZQoaAZHQJNj+dnTRY1oB03oA2gIR0CsZj87p3X7dX2UKGgGR0CUctq7ROUMaAdN6ANoCEdArGpoA80UGnV9lChoBkdAlq3SUHIIW2gHTegDaAhHQKxtfpbD/ER1fZQoaAZHQJo+QEbHZK5oB03oA2gIR0CscexvFWGRdX2UKGgGR0CR5L20Re1KaAdN6ANoCEdArHO9oL5RCXV9lChoBkdAgNxQJokAxWgHTegDaAhHQKx6Fifg75p1fZQoaAZHQJTQPC79Q41oB03oA2gIR0CsfUPxH5JsdX2UKGgGR0CZu+uM+/xlaAdN6ANoCEdArIDvXXiBG3V9lChoBkdAmtjpNKyv92gHTegDaAhHQKyCD0VafSR1fZQoaAZHQFlGK9f1HvtoB0uLaAhHQKyDzl2/zrh1fZQoaAZHQJzOxeJHiFVoB03oA2gIR0CshljUd7v5dX2UKGgGR0CZ2HwIdELIaAdN6ANoCEdArImEIzFdcHV9lChoBkdAmPhlMVUMomgHTegDaAhHQKyNIpqASWZ1fZQoaAZHQJf9D3Gn4whoB03oA2gIR0CskYsbWEsbdX2UKGgGR0CWPpq9XcQAaAdN6ANoCEdArJWp7kXDWXV9lChoBkdAmJoUpy6tkmgHTegDaAhHQKyZLdt2s7x1fZQoaAZHQJU+7Ip6QeVoB03oA2gIR0CsnMmkvboKdX2UKGgGR0CTzmi6g/TtaAdN6ANoCEdArJ+Pvv0AcXV9lChoBkdAmBxYwAU+LWgHTegDaAhHQKyiDlcQiA51fZQoaAZHQJwMTw6QvHtoB03oA2gIR0CspTJOnEVGdX2UKGgGR0CQpfGGEf1ZaAdN6ANoCEdArKjS7Ackt3V9lChoBkdAkXqVWwNb1WgHTegDaAhHQKysNwF1SwZ1fZQoaAZHQJUeEhRqGlBoB03oA2gIR0CssCIUSIxhdX2UKGgGR0CSblbC79Q5aAdN6ANoCEdArLTWWD6Fd3V9lChoBkdAja4fLcKw6mgHTegDaAhHQKy4blSS/0x1fZQoaAZHQJUWpTQ3PzFoB03oA2gIR0Csu0XrUsnRdX2UKGgGR0CYaSliSaE0aAdN6ANoCEdArL3MCRwIdHV9lChoBkdAk09YS13MZGgHTegDaAhHQKzBCcWj4591fZQoaAZHQJYIWeXiR4hoB03oA2gIR0CsxJ/fGdZrdX2UKGgGR0CSwzaZhKDkaAdN6ANoCEdArMdmvMbFTHV9lChoBkdAl8sKFIuoP2gHTegDaAhHQKzKwNVinYR1fZQoaAZHQJs9t4wAU+NoB03oA2gIR0Csz/i5VfeDdX2UKGgGR0CbZbMoc7yQaAdN6ANoCEdArNRasS00FnV9lChoBkdAm/KmM85jpmgHTegDaAhHQKzXO3Ns3yZ1fZQoaAZHQJyUMCRwIdFoB03oA2gIR0Cs2dgB91EFdX2UKGgGR0Cahe3XI2fkaAdN6ANoCEdArN0eyJKraXV9lChoBkdAnVCTtsvZiGgHTegDaAhHQKzg8APNFBp1fZQoaAZHQJic7T4L1EpoB03oA2gIR0Cs47sO5J9RdX2UKGgGR0Cb9PMwUQCkaAdN6ANoCEdArOZhhF3IMnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}