--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_04 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9842906234658811 - name: Precision type: precision value: 0.9845888529063952 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_04 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Accuracy: 0.9843 - F1 Score: 0.9844 - Precision: 0.9846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 Score | Validation Loss | Precision | |:-------------:|:-----:|:----:|:--------:|:--------:|:---------------:|:---------:| | 1.2662 | 1.0 | 16 | 0.8370 | 0.8309 | 0.4424 | 0.8464 | | 0.3778 | 0.98 | 20 | 0.2700 | 0.9062 | 0.9067 | 0.9072 | | 0.2377 | 2.0 | 41 | 0.2035 | 0.9229 | 0.9234 | 0.9269 | | 0.1201 | 2.98 | 61 | 0.1345 | 0.9465 | 0.9467 | 0.9512 | | 0.0774 | 4.0 | 82 | 0.1229 | 0.9612 | 0.9618 | 0.9643 | | 0.0495 | 4.98 | 102 | 0.0562 | 0.9813 | 0.9815 | 0.9816 | | 0.0358 | 6.0 | 123 | 0.0470 | 0.9843 | 0.9844 | 0.9846 | | 0.0228 | 6.98 | 143 | 0.0447 | 0.9833 | 0.9834 | 0.9836 | | 0.0181 | 8.0 | 164 | 0.0465 | 0.9828 | 0.9830 | 0.9831 | | 0.0132 | 8.98 | 184 | 0.0436 | 0.9833 | 0.9835 | 0.9836 | | 0.0126 | 9.76 | 200 | 0.0461 | 0.9838 | 0.9840 | 0.9840 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3