
ExHuBERT: Enhancing HuBERT Through Block Extension and
Fine-Tuning on 37 Emotion Datasets
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Abstract
Foundation models have shown great promise in speech emo-
tion recognition (SER) by leveraging their pre-trained repre-
sentations to capture emotion patterns in speech signals. To
further enhance SER performance across various languages
and domains, we propose a novel twofold approach. First,
we gather EmoSet++, a comprehensive multi-lingual, multi-
cultural speech emotion corpus with 37 datasets, 150,907 sam-
ples, and a total duration of 119.5 hours. Second, we intro-
duce ExHuBERT, an enhanced version of HuBERT achieved
by backbone extension and fine-tuning on EMOSET++. We du-
plicate each encoder layer and its weights, then freeze the first
duplicate, integrating an extra zero-initialized linear layer and
skip connections to preserve functionality and ensure its adapt-
ability for subsequent fine-tuning. Our evaluation on unseen
datasets shows the efficacy of ExHuBERT, setting a new bench-
mark for various SER tasks. Model and details on EMOSET++:
https://huggingface.co/amiriparian/ExHuBERT.
Index Terms: affective computing, speech emotion recogni-
tion, transformers, deep learning

1. Introduction
Speech Emotion Recognition (SER) has a rich research history
going back to the 1970s (first patents) [1] and 1990s (first re-
search papers) [2] and while it has reaped the benefits of deep
learning, a core issue remains to this day: While there are many
available databases of emotional speech, most of them only con-
tain comparatively few samples or speakers, hindering effective
single-corpus training of large neural networks [3]. As a re-
sponse to this circumstance, cross- and multi-corpus SER has
established itself as a highly important research direction [4].
Due to the fact that databases in the field often differ signifi-
cantly in recording settings, nature of speech and emotion por-
trayal (acted, elicited, natural), language, and other factors, suc-
cessful approaches have employed special strategies and archi-
tectural considerations such as domain adaptation [5] or adapter
transfer learning [6] to achieve satisfactory performance. Other
efforts have gone towards making deep learning models more
robust against distortions, noise, and other variations in the
speech signal [7, 8].

However, the recent paradigm shift in general deep learn-
ing towards large, Transformer-based models has already im-
pacted the field [9]. The Transformer architecture’s inher-
ent capability of learning arbitrary structural information from
high-dimensional data combined with the exploitation of huge
amounts of unlabeled data through self- and unsupervised learn-
ing has significantly reduced the need for human-annotated cor-
pora for training powerful and transferable models [10, 11].
Specifically for the fields of speech recognition and analysis,

pre-trained Transformers such as Wav2Vec2.0 (W2V2) [12] or
HuBERT [13] have shown considerable generalization capabil-
ities. By exploiting self-supervision on large amounts of un-
labeled speech data, these models learn to effectively capture
the structure of spoken language. For a wide range of down-
stream tasks, pre-trained transformers provide competitive per-
formance as feature extractors [14, 15] or through finetuning,
e. g., for SER and speaker identification [16]. Wagner et al. [9]
finetune wav2vec and HuBERT models on MSP-Podcast [17]
and show that their best models provide state-of-the-art perfor-
mance on a number of SER corpora. They further trace the
models’ efficacy to a number of beneficial characteristics in-
duced by both pre-training and the transformer architecture it-
self, such as implicit modeling of linguistic information and a
general resilience against speaker, gender, or domain variations.

While these and other works have convincingly made the
argument for large, pre-trained Transformer models in SER,
none have investigated whether their generalisability and ro-
bustness can enable effective learning of a single, transferable
model on a heterogenous set of databases without the need for
domain or corpus adaptation strategies. In the present study, we
aim to fill this gap by evaluating the capability of large audio
transformers to learn salient features for SER by multi-corpus
finetuning. For this purpose, we build on the work of [6], in-
troducing EmoSet++, integrating 37 SER corpora spanning 15
languages. We then fine-tune HuBERT on the assembled cor-
pus and compare its transfer learning performance to other large
pre-trained models on 6 additional SER databases. Finally,
we introduce ExHuBERT, which integrates EMOSET++ fine-
tuning with Backbone Block Expansion (BBE) – a technique
recently introduced in LLAMA Pro [18] – to deliver a state-of-
the-art model and training strategy for emotion recognition.

2. EmoSet++
We introduce EMOSET++, a comprehensive multi-lingual,
multi-cultural speech emotion corpus. It extends EmoSet [6]
and integrates 37 unique emotion datasets with 150,907 speech
recordings and a cumulative length of 119.5 hours. Most of
the datasets that we have included comprise common languages
such as English, German, or Mandarin, alongside rarer ones like
Persian or Urdu. For all corpora, we create speaker-independent
splits. To facilitate training, all distinct dataset labels (compris-
ing 106 emotion classes) are mapped to six classes, representing
combinations of low/high arousal and negative/neutral/positive
valence. The mapping is based on Russel’s Circumplex of Af-
fect [19]. The dataset splits were derived through three meth-
ods: adopting from the collected dataset, manual construction
for speaker independence, or simply dividing it into 10% par-
titions for both testing and validation in cases where speaker

https://huggingface.co/amiriparian/ExHuBERT
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Figure 1: Distribution of speech sample durations within
EMOSET++. Predominantly, the samples fall within the range
of 0 to 5 seconds in length.

information was not explicitly provided. We do not conduct
any re-weighting or re-balancing of speech samples for our ma-
chine learning experiments. Figure 1 displays sample durations
ranging from 0 to 6 seconds, with longer samples excluded for
readability. Most samples fall in [0− 5] second range.

3. Proposed Approach
We propose an enhanced version of HuBERT [13] through fine-
tuning on EMOSET++ and incorporating Backbone Block Ex-
pansion (BBE), denoted as ExHuBERT. Specifically, we fine-
tune the encoder part of the HuBERT architecture on 37 di-
verse emotion datasets, which span various languages and cul-
tural backgrounds (cf. Section 3.1). After the weights are up-
dated, we conduct backbone extension (cf. Section 3.2), and
in the final step, we evaluate the performance of the back-
bone extended HuBERT (ExHuBERT) on 6 unseen test emotion
datasets (cf. Section 4).

3.1. Fine-Tuning HuBERT on EmoSet++

Our system is built upon the Transformer architecture Hu-
BERT [13], which has shown promising results in SER [9, 28,
29]. A simple linear layer is added on top for the classifica-
tion of the 6 mapped arousal valence classes. Fine-tuning is
conducted in a round-robin fashion, ensuring each dataset con-
tributes equally to the model. Upon achieving a state where
our model spans multiple domains and languages, we utilize
its transfer learning and generalization capabilities within Ex-
HuBERT.

3.2. Backbone Block Expansion

After the fine-tuning process, we duplicate each encoder layer
along with its weights. This augmentation results in an ex-
panded version of HuBERT (ExHuBERT), featuring a total of
48 layers. The newly added layers are inserted after the original
ones, accompanied by a skip connection to maintain the original
layer’s behavior. To stabilize the training process after layer du-
plication, we add a Zero Linear Layer (ZLL) at the end of each
duplicated layer. The ZLL comprises initialized zero weights,
ensuring that the output of the copied layers initiates from zero.
This technique plays a crucial role in training by preventing
unknown outputs from destabilizing the training process [18].
Furthermore, we freeze the original layers to preserve their en-
coded knowledge, permitting only the copied layers to undergo
training. These steps guarantee that the HuBERT model with
BBE behaves identically to the HuBERT model without BBE

during the initial stages. A high-level overview of ExHuBERT
is depicted in Figure 2.

4. Experiments and Results
We split the experiments into two main parts: i) selection of the
suitable audio Transformer for the BBE and fine-tuning of the
chosen Transformer on EMOSET++ (cf. Section 4.1), and ii)
conducting BBE on the fine-tuned Transformer and evaluating
its performance on unseen emotion datasets (cf. Section 4.2).

4.1. Selection of the Suitable Audio Transformer for BBE

To choose the optimal architecture for BBE, we evaluate 6 state-
of-the-art Transformers, including W2V2 XLS-R (300 million1

and 1 billion2), Whisper (Medium3 and Large v34), and Hu-
BERT (Large5 and XLarge6) on all 26 emotion corpora of
EMOSET [6]. We selected two variants of each architecture to
compare their parameter impact, ensuring that variants of the
same size had approximately equal parameter counts. Each
Transformer is initialized with pre-trained weights obtained
from huggingface.co. Additionally, we add a simple lin-
ear layer on top of each Transformer, with an output size of 6,
corresponding to the mapped classes. For the evaluation met-
ric, we use Unweighted Average Recall (UAR) due to its ef-
fectiveness in assessing the overall classification performance
across all classes without bias towards any under- or oversam-
pled class. We fine-tune all Transformer models in a round-
robin fashion, sequentially passing each dataset forward and
backward through the model with one batch in each step. For
W2V2 and HuBERT variants, we use raw audio waveforms re-
sampled to 16 kHz as inputs, while we feed Whisper with log
Mel spectrograms (with either 80 or 128 bins) obtained from
waveforms. We freeze the CNN encoder during the entire train-
ing process for W2V2 and HuBERT. This step is unnecessary
for Whisper. We conclude the experimentation phase after 3k
steps using AdamW optimisation with β1 = 0.9, β2 = 0.999,
ϵ = 1e − 08, and a learning rate of 1e − 05. The performance
of these audio Transformers on the unseen test partition of eight
commonly used emotion datasets is provided in Table 17.

Our results demonstrate that the HuBERT Large model out-
performs others, achieving an average UAR of 62.7% over all
eight datasets, followed by W2V2 XLS-R 300 M with 57.1%
UAR. The worst-performing models are both variants of Whis-
per, each achieving 42.0% and 41.1% UAR, respectively. We
consequently settle on HuBERT Large as the base model for
fine-tuning on the extended EMOSET++ and transfer learning
through BBE.

Subsequently, we test the impact of using both 83.7% of
EMOSET++ and the full EMOSET++ for fine-tuning the se-
lected HuBERT model for speech emotion recognition, aiming
to evaluate the impact of dataset size on model performance and
generalization. Training on EMOSET++ leads to substantial
performance gains for all databases, compared to the original
EMOSET, raising the average UAR over the 8 databases from

1https://huggingface.co/facebook/wav2vec2-xls-r-300m
2https://huggingface.co/facebook/wav2vec2-xls-r-1b
3https://huggingface.co/openai/whisper-medium
4https://huggingface.co/openai/whisper-large-v3
5https://huggingface.co/facebook/hubert-large-ls960-ft
6https://huggingface.co/facebook/hubert-xlarge-ls960-ft
7Results on all datasets are provided here:

https://huggingface.co/amiriparian/ExHuBERT/blob/main/
supp-mat.pdf
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https://huggingface.co/openai/whisper-medium
https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/facebook/hubert-large-ls960-ft
https://huggingface.co/facebook/hubert-xlarge-ls960-ft
https://huggingface.co/amiriparian/ExHuBERT/blob/main/supp-mat.pdf
https://huggingface.co/amiriparian/ExHuBERT/blob/main/supp-mat.pdf


Performance in [% UAR]

Datasets W2V2 W2V2 Whisper Whisper HuBERT HuBERT HuBERT HuBERT
XLS-R XLS-R Medium Large Large XLarge Large Large
300M 1B v3 83.7% of EMOSET++ EMOSET++

Berlin Database of Emotional Speech (EMO-DB) [20] 91.1 86.0 55.0 61.2 90.0 82.4 88.1 99.1
Database of Elicited Mood in Speech (DEMOS) [21] 56.1 69.2 30.0 32.8 67.7 57.2 70.8 90.7
EmoFilm [22] 56.9 43.4 49.7 44.5 58.6 57.4 58.9 60.5
EmotiW-2014[23] 40.0 34.7 28.6 27.2 33.1 32.5 40.2 39.1
eNTERFACE [24] 66.4 76.1 39.3 38.6 93.9 63.2 92.9 94.6
IEMOCAP [25] 56.4 49.7 42.9 39.0 61.1 65.8 63.9 67.8
Multimodal EmotionLines Dataset (MELD) [26] 23.2 24.7 23.8 22.6 30.0 25.9 34.1 38.5
Mandarin Emotional Speech (MES) [27] 66.3 48.8 66.3 65.0 67.5 63.8 70.0 67.5

Average UAR over all datasets 57.1 54.1 42.0 41.4 62.7 56.0 64.9 69.7

Table 1: Performance comparison of the applied Transformers on eight common speech emotion datasets. Our proposed fine-tuning of
HuBERT Large on EMOSET++ demonstrates superior performance over all other Transformers. The best results without fine-tuning
on EMOSET++ are bolded, and the best overall results (including fine-tuning on EMOSET++) are bolded and lightly shaded.

Waveform

Transformer

C
N

N
 E

nc
od

er

ExHuBERT

La
ye

r 1

La
ye

r 1
*

La
ye

r 2

La
ye

r 2
4

C
la

ss
ifi

er
 H

ea
d

La
ye

r 2
4*

Skip Connection Skip Connection

Ze
ro

 L
in

ea
r L

ay
er

 (Z
LL

)

Ze
ro

 L
in

ea
r L

ay
er

 (Z
LL

)

Figure 2: Outline of the proposed ExHuBERT architecture, including skip connections and zero linear layers. The CNN encoder and
the weights of the layers colored in blue are frozen. The classifier head and the weights of the layers marked with an asterisk (*) will
undergo fine-tuning during the evaluation process.

62.7% to 64.9% when only adding 5 training corpora, and to
69.7% with the full set. All of the evaluated databases bene-
fit from adding more corpora to EMOSET. However, EmoFilm
and Mandarin Emotional Speech stop seeing gains after adding
the first 5 new datasets.

4.2. ExHuBERT Comparison

We compare the transfer learning capabilities of our enhanced
version of HuBERT (ExHuBERT Large EMOSET++) against
other state-of-the-art Transformer models on a set of six un-
seen SER corpora, including Athens Emotional States In-
ventory (AESI) [30], Audio, Speech, and Vision Process-
ing Lab Emotional Sound database (ASVP-ESD) [31], JL-
Corpus [32], MLEnd8, Synthesized Database of Basic Emo-
tions (SyntAct) [33], and Variably Intense Vocalizations of Af-
fect and Emotion Corpus (VIVAE) [34]. Specifically, we chose
two variants of W2V2 – W2V2 XLS-R and the emotion fine-
tuned W2V2 model by Wagner et al. [9] – and HuBERT Large
LS960 to evaluate the impact of model architectures and the ef-
ficacy of EMOSET++ fine-tuning. Furthermore, we ablate the
performance gains achieved through EMOSET++ fine-tuning
from those due to block expansion by additionally expand-
ing the LibriSpeech pre-trained HuBERT model (ExHuBERT
Large LS960). Finally, we increase the number of train-

8https://mlenddatasets.github.io/spoken numerals/

able parameters of our ExHuBERT model by (1) unfreezing
the original HuBERT layers (ExHuBERT Large Non-Frozen
EMOSET++) and (2) tripling each original layer during block
expansion (ExHuBERT XLarge EMOSET++). Table 2 shows
the results and the number of trainable parameters for each of
the evaluated models on six databases external to EMOSET++.
For all but one of the six external databases, starting from a
model that has been pre-trained on SER data, be it MSP-Podcast
for W2V2 Emotion or EMOSET++ for HuBERT Large, leads
to substantially improved performance, compared to the cor-
responding models trained on general speech data. The note-
worthy outlier is found with SyntAct, which is a database of
synthesized emotional speech. Here, performance has degraded
from the respective base models of W2V2 and HuBERT large,
indicating that fine-tuning on emotional speech data might have
diminished generalization capabilities to non- and atypical SER
tasks. However, BBE closes this performance gap, enabling
efficient transfer from human-recorded to synthetic emotional
speech. We hypothesize that without BBE, important SER
knowledge acquired during pre-training gets overwritten early
in the fine-tuning process due to the domain gap between syn-
thetic and natural voices. Looking at the remaining databases,
BBE leads to performance gains for HuBERT fine-tuned on
EMOSET++, raising the average UAR from 71.1% to 74.2%.
On the other hand, applying BBE to HuBERT pre-trained on
LibriSpeech (ExHuBERT Large LS960) does not lead to con-

https://mlenddatasets.github.io/spoken_numerals/
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Figure 3: Training curves on the six external SER corpora, displaying validation UAR.

Performance on unseen test in [% UAR]

Dataset W2V2 W2V2 HuBERT HuBERT ExHuBERT ExHuBERT ExHuBERT ExHuBERT
Emotion XLS-R Large LS960 Large Large LS960 Large Large Non-Frozen XLarge

EMOSET++ EMOSET++ EMOSET++ EMOSET++

AESI [30] 48.8 40.6 80.9 93.0 81.1 94.7 86.9 33.7
ASVP-ESD [31] 36.7 34.5 40.5 45.9 41.8 51.4 43.5 27.1
JL-Corpus [32] 41.4 36.8 47.9 66.7 45.6 67.7 47.7 41.7
MLEnd 73.6 65.2 74.6 81.4 77.7 80.0 77.9 60.1
SyntAct [33] 82.7 89.6 93.7 84.6 91.2 93.0 93.5 63.9
VIVAE [34] 45.0 45.6 42.1 54.5 46.4 58.2 49.3 25.1

Average UAR over all datasets 52.1 54.7 63.3 71.1 61.3 74.2 66.5 42.0

Number of trainable parameters 161.13 M 311.49 M 311.49 M 311.49 M 336.68 M 336.68 M 664.18 M 664.18 M

Table 2: Performance comparison of the transfer learning capabilities of our proposed backbone extended HuBERT (ExHuBERT), and
its variations, against state-of-the-art Transformers across six emotion datasets. None of these datasets were utilized in the fine-tuning
process of EMOSET++. For each model, we also provide the average UAR over all datasets and the number of trainable parameters.
The best results are bolded and lightly shaded.

sistent improvements across the six SER corpora, with a slightly
lower average UAR of 61.3% compared to fine-tuning without
BBE. Overall, BBE seems to have a positive effect on accuracy
when the domain shift between source and target databases is
rather small, e. g., from one SER corpus to another.

We further analyze how fast the different models converge
during training on an unseen corpus in Figure 3, which shows
the validation UARs over 10,000 training steps. Analogous
to the test set results, EMOSET++ pre-training increases over-
all performance and further achieves faster convergence on all
databases compared to models without SER pre-training and
the MSP-Podcast fine-tuned W2V2. For AESI, BBE helps the
ExHuBERT model to converge even earlier.

To conclude, we look at the results achieved with the larger
versions of ExHuBERT, which double the amount of train-
able parameters. Unfreezing the original HuBERT layers af-
ter BBE degrades performance even from simple fine-tuning of
HuBERT on each of the target corpora, highlighting the im-
portance of keeping the weights of the original model fixed
for transfer learning. Expanding each block in ExHuBERT by
adding a second copy of the respective layer suffers from sub-
stantial overfitting, achieving the worst overall UAR of all eval-
uated Transformer models.

In summary, the validation of our approach on both
databases contained within EMOSET++ and external corpora
shows that (1) multi-corpus pre-training on EMOSET++ leads
to substantially increased SER performance on seen and unseen
corpora, and (2) the addition BBE in ExHuBERT further helps
with generalization to new datasets.

For running all of our machine learning experiments, we
utilized one RTX-3090 GPU with 24GB memory, and needed
a total time of 313 hours: 121 h for stage 1 (pre-selection of
Transformers), 87 h for EMOSET++ fine-tuning, 17 h for Ex-

HuBERT EMOSET++ testing, and 88 h for the second stage.

5. Conclusions
We have proposed a novel twofold approach for SER by (i) col-
lecting EMOSET++, a comprehensive multi-cultural and multi-
lingual corpus comprising 37 emotion datasets, and (ii) in-
troducing an enhanced version of HuBERT, denoted as Ex-
HuBERT, achieved through fine-tuning on EMOSET++ and in-
corporating backbone extension. To find the suitable Trans-
former for BBE, we first selected six versions of state-of-
the-art audio Transformers and analyzed their performance on
EMOSET [6] and then fine-tuned the best-performing Trans-
former (which was HuBERT Large) on EMOSET++. In the
subsequent phase, we applied BBE to the fine-tuned HuBERT
Large model and compared its performance with other Trans-
formers on six previously unseen emotion datasets. The experi-
mental results underscore the effectiveness of our proposed ap-
proach, demonstrating its capacity to generalize across diverse
datasets and establish new benchmarks for a variety of emo-
tion recognition tasks. Lastly, we have uploaded ExHuBERT on
huggingface.co9. Fine-tuning and deploying ExHuBERT
may be computationally demanding, potentially limiting its use
in resource-constrained environments.

For future work, we aim to include MSP-Podcast
dataset [17] in EMOSET++ and enhance ExHuBERT for con-
tinuous recognition of arousal, valence, and dominance.

6. Acknowledgements
This work was supported by MDSI – Munich Data Science In-
stitute as well as MCML – Munich Center of Machine Learning.

9https://huggingface.co/amiriparian/ExHuBERT
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