--- library_name: transformers language: - ps license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - pairsys/open_asr metrics: - wer model-index: - name: Whisper Small Pashto results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Open ASR type: pairsys/open_asr args: 'config: pashto' metrics: - name: Wer type: wer value: 34.475374732334046 --- # Whisper Small Pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Open ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.7846 - Wer: 34.4754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0112 | 17.8571 | 1000 | 0.6265 | 38.1462 | | 0.0023 | 35.7143 | 2000 | 0.7230 | 35.0260 | | 0.0006 | 53.5714 | 3000 | 0.7555 | 34.7201 | | 0.0001 | 71.4286 | 4000 | 0.7708 | 34.9342 | | 0.0001 | 89.2857 | 5000 | 0.7846 | 34.4754 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3