# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # # BSD 3-Clause License # # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import annotations import math from typing import Any, Dict, Optional, Tuple, Union from dataclasses import dataclass, field import torch import torch.nn as nn from einops import rearrange, repeat from transformers.activations import ACT2FN from transformers import PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from .configuration_mixformer_sequential import MixFormerSequentialConfig try: from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding from flash_attn.ops.fused_dense import FusedDense except: FlashRotaryEmbedding = None FusedDense = None @dataclass class InferenceParams: """Inference parameters passed to model to efficiently calculate and store context during inference. Reference: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. Args: max_seqlen: Maximum sequence length. max_batch_size: Maximum batch size. seqlen_offset: Sequence length offset. batch_size_offset: Batch size offset. key_value_memory_dict: Key value memory dictionary. lengths_per_sample: Lengths per sample. """ max_seqlen: int = field(metadata={"help": "Maximum sequence length."}) max_batch_size: int = field(metadata={"help": "Maximum batch size."}) seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) key_value_memory_dict: Dict[str, Any] = field( default_factory=dict, metadata={"help": "Key value memory dictionary."} ) lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."}) class Embedding(nn.Module): """Token embedding with dropout.""" def __init__(self, config: PretrainedConfig) -> None: super().__init__() self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.wte(input_ids) hidden_states = self.drop(hidden_states) return hidden_states def _apply_rotary_emb( x: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor, ) -> torch.FloatTensor: _, seqlen, _, head_dim = x.shape rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= head_dim assert seqlen <= rotary_seqlen assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) x_rot = x[:, :, :, :rotary_dim] x_pass = x[:, :, :, rotary_dim:] x1, x2 = x_rot.chunk(2, dim=-1) c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype) return torch.cat([x_rot, x_pass], axis=-1) def _apply_rotary_emb_kv( kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor, cos_k: Optional[torch.FloatTensor] = None, sin_k: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: _, seqlen, two, _, head_dim = kv.shape assert two == 2 rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= head_dim assert seqlen <= rotary_seqlen assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) k_rot = kv[:, :, 0, :, :rotary_dim] k_pass = kv[:, :, 0, :, rotary_dim:] k1, k2 = k_rot.chunk(2, dim=-1) c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]] k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype) return torch.cat( [ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), kv[:, :, 1:2, :, :], ], axis=2, ) def _apply_rotary_emb_qkv( qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor, cos_k: Optional[torch.FloatTensor] = None, sin_k: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: _, seqlen, three, _, head_dim = qkv.shape assert three == 3 rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= head_dim assert seqlen <= rotary_seqlen assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2) q_rot = qkv[:, :, 0, :, :rotary_dim] q_pass = qkv[:, :, 0, :, rotary_dim:] k_rot = qkv[:, :, 1, :, :rotary_dim] k_pass = qkv[:, :, 1, :, rotary_dim:] q1, q2 = q_rot.chunk(2, dim=-1) k1, k2 = k_rot.chunk(2, dim=-1) c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) return torch.cat( [ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), qkv[:, :, 2:3, :, :], ], axis=2, ) class RotaryEmbedding(nn.Module): """Rotary positional embedding (RoPE). Reference: RoFormer: Enhanced Transformer with Rotary Position Embedding. https://arxiv.org/pdf/2104.09864.pdf. """ def __init__( self, dim: int, base: int = 10000, scale_base: Optional[float] = None, pos_idx_in_fp32: bool = True, device: Optional[str] = None, **kwargs, ) -> None: super().__init__() if scale_base is not None: raise NotImplementedError self.dim = dim self.base = float(base) self.scale_base = scale_base self.pos_idx_in_fp32 = pos_idx_in_fp32 self.device = device # Generate and save the inverse frequency buffer (non-trainable) inv_freq = self._compute_inv_freq(device) self.register_buffer("inv_freq", inv_freq, persistent=False) # Generate and save the scale buffer (non-trainable) scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale, persistent=False) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) def _update_cos_sin_cache( self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None ) -> None: # Reset the tables if sequence length has been chaned, if we are on a # new device or if we are switching from inference mode to training if ( seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen # fp32 is preferred since the output of `torch.arange` can be quite large # and bf16 would lose a lot of precision if self.pos_idx_in_fp32: t = torch.arange(seqlen, device=device, dtype=torch.float32) if self.inv_freq.dtype != torch.float32: inv_freq = self._compute_inv_freq(device=device) else: inv_freq = self.inv_freq else: t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) inv_freq = self.inv_freq # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 ) / self.scale_base scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") # Force the scale multiplication to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward( self, qkv: torch.Tensor, kv: Optional[torch.Tensor] = None, seqlen_offset: int = 0, max_seqlen: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: seqlen = qkv.shape[1] if max_seqlen is not None: self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) else: self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype) if kv is None: return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) else: q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]) return q, kv class MLP(nn.Module): """Multi-Layer Perceptron. Reference: Attention Is All You Need. https://arxiv.org/pdf/1706.03762.pdf. """ def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None: super().__init__() act_fn = config.activation_function if act_fn is None else act_fn assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}." n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner n_inner = n_inner if n_inner is not None else 4 * config.n_embd self.fc1 = nn.Linear(config.n_embd, n_inner) self.fc2 = nn.Linear(n_inner, config.n_embd) self.act = ACT2FN[act_fn] def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class SelfAttention(nn.Module): """Self-attention layer (compatible with PyTorch). Reference: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. """ def __init__( self, causal: bool = True, softmax_scale: Optional[float] = None, attention_dropout: float = 0.0, ) -> None: super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) def forward( self, qkv: torch.FloatTensor, causal: bool = None, attention_mask: Optional[torch.BoolTensor] = None, **kwargs, ) -> torch.FloatTensor: batch_size, seqlen = qkv.shape[0], qkv.shape[1] q, k, v = qkv.unbind(dim=2) causal = self.causal if causal is None else causal softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if attention_mask is not None: padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(attention_mask, 0.0) scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") if causal: causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention = self.drop(attention) output = torch.einsum("bhts,bshd->bthd", attention, v) return output class CrossAttention(nn.Module): """Cross-attention layer (compatible with PyTorch). Reference: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. """ def __init__( self, causal: bool = True, softmax_scale: Optional[float] = None, attention_dropout: float = 0.0, ) -> None: super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) def forward( self, q: torch.FloatTensor, kv: torch.FloatTensor, causal: bool = None, attention_mask: Optional[torch.BoolTensor] = None, **kwargs, ) -> torch.FloatTensor: batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3] if kv.shape[3] != q.shape[2]: kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) k, v = kv.unbind(dim=2) causal = self.causal if causal is None else causal softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if attention_mask is not None: padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(attention_mask, 0.0) scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") if causal: rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1") cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) causal_mask = cols > rows + seqlen_k - seqlen_q scores = scores.masked_fill(causal_mask, -10000.0) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention = self.drop(attention) output = torch.einsum("bhts,bshd->bthd", attention, v) return output def _find_mha_dims( config: PretrainedConfig, n_head: Optional[int] = None, n_head_kv: Optional[int] = None, head_dim: Optional[int] = None, ) -> Tuple[int, int]: assert all( hasattr(config, attr) for attr in ["n_embd", "n_head"] ), "`config` must have `n_embd` and `n_head` attributes." if head_dim is None: assert ( config.n_embd % config.n_head == 0 ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})." if n_head is None and head_dim is None: head_dim = config.n_embd // config.n_head n_head = config.n_head elif n_head is None or head_dim is None: raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") if n_head_kv is None: n_head_kv = getattr(config, "n_head_kv", None) or n_head assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`." return n_head, n_head_kv, head_dim def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor: num_heads, head_dim = kv.shape[-2:] if layer_idx not in inference_params.key_value_memory_dict: kv_cache = torch.empty( inference_params.max_batch_size, inference_params.max_seqlen, 2, num_heads, head_dim, dtype=kv.dtype, device=kv.device, ) inference_params.key_value_memory_dict[layer_idx] = kv_cache else: kv_cache = inference_params.key_value_memory_dict[layer_idx] batch_start = inference_params.batch_size_offset batch_end = batch_start + kv.shape[0] assert batch_end <= kv_cache.shape[0] sequence_start = inference_params.seqlen_offset sequence_end = sequence_start + kv.shape[1] assert sequence_end <= kv_cache.shape[1] assert kv_cache is not None kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv kv = kv_cache[batch_start:batch_end, :sequence_end, ...] return kv class MHA(nn.Module): """Multi-head attention layer.""" def __init__( self, config: PretrainedConfig, dtype: Optional[torch.dtype] = None, device: Optional[str] = None, rotary_dim: Optional[int] = None, rotary_emb_scale_base: Optional[float] = None, n_head: Optional[int] = None, n_head_kv: Optional[int] = None, head_dim: Optional[int] = None, bias: bool = True, causal: bool = True, softmax_scale: Optional[float] = None, layer_idx: Optional[int] = None, return_residual: bool = False, checkpointing: bool = False, ) -> None: super().__init__() # Rotary embedding self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) if self.rotary_emb_dim > 0: rotary_kwargs = {"device": device} if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0: rotary_kwargs["scale_base"] = rotary_emb_scale_base rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding if rotary_cls is None: rotary_cls = RotaryEmbedding self.rotary_emb = rotary_cls(self.rotary_emb_dim, **rotary_kwargs) # MLP self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim) op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) hidden_size = config.n_embd linear_cls = FusedDense if config.fused_dense else nn.Linear if linear_cls is None: linear_cls = nn.Linear self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype) self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype) # Attention self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop) self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop) self.layer_idx = layer_idx self.return_residual = return_residual self.checkpointing = checkpointing def _forward_self_attn( self, x: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor] ) -> torch.FloatTensor: qkv = self.Wqkv(x) qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv) if self.checkpointing: return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, attention_mask=attention_mask) return self.inner_attn(qkv, attention_mask=attention_mask) def _forward_cross_attn( self, x: torch.FloatTensor, past_key_values: Optional[InferenceParams], attention_mask: Optional[torch.BoolTensor], ) -> torch.FloatTensor: qkv = self.Wqkv(x) q = qkv[..., : self.n_head * self.head_dim] q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) kv = qkv[..., self.n_head * self.head_dim :] kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0 causal = None if seqlen_offset == 0 else False if self.rotary_emb_dim > 0: q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) if past_key_values is not None: kv = _update_kv_cache(kv, past_key_values, self.layer_idx) if self.checkpointing: return torch.utils.checkpoint.checkpoint( self.inner_cross_attn, q, kv, attention_mask=attention_mask, causal=causal ) return self.inner_cross_attn(q, kv, attention_mask=attention_mask, causal=causal) def forward( self, x: torch.FloatTensor, past_key_values: Optional[InferenceParams] = None, attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: if attention_mask is not None and torch.any(~attention_mask.bool()): attention_mask = attention_mask.bool() else: attention_mask = None # MHA if self.n_head == self.n_head_kv: if past_key_values is None: # If `past_key_values` are not supplied, we run self-attention attn_output = self._forward_self_attn(x, attention_mask) else: # If `past_key_values` are supplied, it means that we might have cached values and # could take advantage of cross-attention attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) # MQA / GQA else: # Regardless of `past_key_values` being supplied or not, it always use cross-attention # because `q` and `kv` lengths might be different attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) output = rearrange(attn_output, "... h d -> ... (h d)") output = self.out_proj(output) return output if not self.return_residual else (output, x) class ParallelBlock(nn.Module): """Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). """ def __init__( self, config: PretrainedConfig, block_idx: Optional[int] = None, ) -> None: super().__init__() self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.block_idx = block_idx self.mixer = MHA(config, layer_idx=block_idx) self.mlp = MLP(config) def forward( self, hidden_states: torch.FloatTensor, past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, attention_mask: Optional[torch.BoolTensor] = None, **kwargs, ) -> torch.FloatTensor: residual = hidden_states hidden_states = self.ln(hidden_states) attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask) if isinstance(attn_outputs, tuple): attn_outputs = attn_outputs[0] attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual return hidden_states class CausalLMHead(nn.Module): """Causal Language Modeling head. Reference: Improving Language Understanding by Generative Pre-Training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. """ def __init__(self, config: PretrainedConfig) -> None: super().__init__() self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.linear = nn.Linear(config.n_embd, config.vocab_size) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states = self.ln(hidden_states) logits = self.linear(hidden_states).to(torch.float32) return logits class CausalLMLoss(nn.Module): """Causal Language Modeling loss. Reference: Improving Language Understanding by Generative Pre-Training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. """ def __init__(self, shift_labels: bool = True) -> None: super().__init__() self.shift_labels = shift_labels self.loss_fct = nn.CrossEntropyLoss() def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: if self.shift_labels: logits = logits[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) return loss class MixFormerSequentialPreTrainedModel(PreTrainedModel): """MixFormer (sequential for DeepSpeed) pre-trained model.""" config_class = MixFormerSequentialConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True def __init__(self, *inputs, **kwargs) -> None: super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module) -> None: if isinstance(module, (nn.Linear,)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if module.bias is not None: module.bias.data.zero_() module.weight.data.fill_(1.0) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, **kwargs, ) -> Dict[str, Any]: if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): past_key_values = InferenceParams( max_seqlen=self.config.n_positions, max_batch_size=input_ids.shape[0], seqlen_offset=0, batch_size_offset=0, key_value_memory_dict={}, lengths_per_sample=None, ) else: # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids` past_key_values.seqlen_offset = len(input_ids[0]) - 1 input_ids = input_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "past_key_values": past_key_values, "attention_mask": attention_mask, } def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None: if isinstance(module, MixFormerSequentialPreTrainedModel): module.gradient_checkpointing = value class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel): """MixFormer (sequential for DeepSpeed) for Causal Language Modeling.""" _keys_to_ignore_on_load_missing = [""] _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] _no_split_modules = ["ParallelBlock"] def __init__(self, config: MixFormerSequentialConfig) -> None: super().__init__(config) modules = [Embedding(config)] modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] modules.append(CausalLMHead(config)) self.layers = nn.Sequential(*modules) self.loss = CausalLMLoss() self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.layers[0].wte def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: self.layers[0].wte = new_embeddings def get_output_embeddings(self) -> nn.Linear: return self.layers[-1].linear def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: self.layers[-1].linear = new_embeddings def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, attention_mask: Optional[torch.BoolTensor] = None, labels: Optional[torch.LongTensor] = None, **kwargs, ) -> CausalLMOutputWithPast: hidden_layer = self.layers[0](input_ids) for module in self.layers[1:-1]: hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask) lm_logits = self.layers[-1](hidden_layer) loss = None if labels is not None: loss = self.loss(lm_logits, labels) return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)