import torch import torch.nn as nn import torch.nn.functional as F def nonlinearity(x): # swish return x * torch.sigmoid(x) class Normalize(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) self.proj = nn.Linear(channels, channels) def forward(self, x): x = x.transpose(1, 2) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) x = self.proj(x) return x.transpose(1, 2) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=4, stride=2, padding=1) def forward(self, x): if self.with_conv: x = self.conv(x) else: x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, _, x_mask): x = x * x_mask h = x h = self.norm1(h) * x_mask h = nonlinearity(h) * x_mask h = self.conv1(h) * x_mask h = self.norm2(h) * x_mask h = nonlinearity(h) * x_mask h = self.conv2(h) * x_mask if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) * x_mask else: x = self.nin_shortcut(x) * x_mask return (x + h) * x_mask class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, x_mask): h_ = x * x_mask h_ = self.norm(h_) * x_mask q = self.q(h_) * x_mask k = self.k(h_) * x_mask v = self.v(h_) * x_mask # compute attention b, c, h = q.shape w = 1 q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = w_ + ((1 - x_mask) * -1e8) + ((1 - x_mask) * -1e8).transpose(1, 2) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h) h_ = self.proj_out(h_) * x_mask return (x + h_) * x_mask class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, resamp_with_conv=False, in_channels): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv1d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch)) block_in = block_out if i_level == self.num_resolutions - 1: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, x_mask): if x_mask is None: x_mask = torch.ones_like(x_mask[:, :, :1]) x = x.permute(0, 2, 1) x_mask = x_mask.permute(0, 2, 1) temb = None # downsampling hs = [self.conv_in(x) * x_mask] for i_level in range(self.num_resolutions): x_mask_ = x_mask[:, :, ::2 ** i_level] for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb, x_mask_) * x_mask_ if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h, x_mask_) * x_mask_ hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1]) * x_mask_[:, :, ::2]) x_mask_ = x_mask[:, :, ::2 ** (self.num_resolutions - 1)] # middle h = hs[-1] * x_mask_ h = self.mid.block_1(h, temb, x_mask_) * x_mask_ h = self.mid.attn_1(h, x_mask_) * x_mask_ h = self.mid.block_2(h, temb, x_mask_) * x_mask_ # end h = self.norm_out(h) * x_mask_ h = nonlinearity(h) * x_mask_ h = self.conv_out(h) * x_mask_ h = h.permute(0, 2, 1) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, resamp_with_conv=True, in_channels, give_pre_end=False): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res block_in = ch * ch_mult[self.num_resolutions - 1] # z to block_in self.conv_in = torch.nn.Conv1d(in_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch)) block_in = block_out if i_level == self.num_resolutions - 1: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, x_mask): if x_mask is None: x_mask = torch.ones_like(z[:, :, :1]).repeat(1, 8, 1) z = z.permute(0, 2, 1) x_mask = x_mask.permute(0, 2, 1) # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle i_level = self.num_resolutions - 1 x_mask_ = x_mask[:, :, ::2 ** i_level] h = self.mid.block_1(h, temb, x_mask_) h = self.mid.attn_1(h, x_mask_) h = self.mid.block_2(h, temb, x_mask_) # upsampling for i_level in reversed(range(self.num_resolutions)): x_mask_ = x_mask[:, :, ::2 ** i_level] for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb, x_mask_) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, x_mask_) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) * x_mask h = h.permute(0, 2, 1) return h