#!/usr/bin/env python3 # -*- coding:utf-8 -*- import io import sys import cv2 import json import time import pathlib import argparse import tempfile import itertools import contextlib import torch import torchvision import numpy as np import onnxruntime as ort from tqdm import tqdm from loguru import logger from tabulate import tabulate from collections import defaultdict from pycocotools.cocoeval import COCOeval CURRENT_DIR = pathlib.Path(__file__).parent sys.path.append(str(CURRENT_DIR)) from coco import COCO_CLASSES class COCOEvaluator: """ COCO AP Evaluation class. All the data in the val2017 dataset are processed and evaluated by COCO API. """ def __init__( self, dataloader, img_size: int, confthre: float, nmsthre: float, num_classes: int, testdev: bool = False, per_class_AP: bool = False, per_class_AR: bool = False, ): """ Args: dataloader (Dataloader): evaluate dataloader. img_size: image size after preprocess. images are resized to squares whose shape is (img_size, img_size). confthre: confidence threshold ranging from 0 to 1, which is defined in the config file. nmsthre: IoU threshold of non-max supression ranging from 0 to 1. num_classes: number of all classes of interest. testdev: whether run on the testdev set of COCO. per_class_AP: Show per class AP during evalution or not. Default to False. per_class_AR: Show per class AR during evalution or not. Default to False. """ self.dataloader = dataloader self.img_size = img_size self.confthre = confthre self.nmsthre = nmsthre self.num_classes = num_classes self.testdev = testdev self.per_class_AP = per_class_AP self.per_class_AR = per_class_AR def evaluate(self, ort_sess, return_outputs=False): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: ort_sess (onnxruntime.InferenceSession): onnxruntime session to evaluate. return_outputs (bool): flag indicates whether return image-wise result or not Returns: eval_results (tuple): summary of metrics for evaluation output_data (defaultdict): image-wise result """ data_list = [] output_data = defaultdict() inference_time = 0 nms_time = 0 n_samples = max(len(self.dataloader) - 1, 1) input_name = ort_sess.get_inputs()[0].name for cur_iter, (imgs, _, info_imgs, ids) in enumerate(tqdm(self.dataloader)): # with torch.no_grad(): # skip the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() # outputs = ort_sess.run(None, {input_name: imgs.numpy()}) outputs = ort_sess.run(None, {input_name: np.transpose(imgs.numpy(), (0, 2, 3, 1))}) outputs = [np.transpose(out, (0, 3, 1, 2)) for out in outputs] outputs = [torch.Tensor(out) for out in outputs] outputs = head_postprocess(outputs) if is_time_record: infer_end = time.time() inference_time += infer_end - start outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) if is_time_record: nms_end = time.time() nms_time += nms_end - infer_end data_list_elem, image_wise_data = self.convert_to_coco_format( outputs, info_imgs, ids, return_outputs=True) data_list.extend(data_list_elem) output_data.update(image_wise_data) statistics = [inference_time, nms_time, n_samples] eval_results = self.evaluate_prediction(data_list, statistics) if return_outputs: return eval_results, output_data return eval_results def convert_to_coco_format(self, outputs, info_imgs, ids, return_outputs=False): data_list = [] image_wise_data = defaultdict(dict) for (output, img_h, img_w, img_id) in zip( outputs, info_imgs[0], info_imgs[1], ids ): if output is None: continue output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize scale = min( self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) ) bboxes /= scale cls = output[:, 6] scores = output[:, 4] * output[:, 5] image_wise_data.update({ int(img_id): { "bboxes": [box.numpy().tolist() for box in bboxes], "scores": [score.numpy().item() for score in scores], "categories": [ self.dataloader.dataset.class_ids[int(cls[ind])] for ind in range(bboxes.shape[0]) ], } }) bboxes = xyxy2xywh(bboxes) for ind in range(bboxes.shape[0]): label = self.dataloader.dataset.class_ids[int(cls[ind])] pred_data = { "image_id": int(img_id), "category_id": label, "bbox": bboxes[ind].numpy().tolist(), "score": scores[ind].numpy().item(), "segmentation": [], } # COCO json format data_list.append(pred_data) if return_outputs: return data_list, image_wise_data return data_list def evaluate_prediction(self, data_dict, statistics): # if not is_main_process(): # return 0, 0, None logger.info("Evaluate in main process...") annType = ["segm", "bbox", "keypoints"] inference_time = statistics[0] nms_time = statistics[1] n_samples = statistics[2] a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size) time_info = ", ".join( [ "Average {} time: {:.2f} ms".format(k, v) for k, v in zip( ["forward", "NMS", "inference"], [a_infer_time, a_nms_time, (a_infer_time + a_nms_time)], ) ] ) info = time_info + "\n" # Evaluate the Dt (detection) json comparing with the ground truth if len(data_dict) > 0: cocoGt = self.dataloader.dataset.coco if self.testdev: json.dump(data_dict, open("./yolox_testdev_2017.json", "w")) cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json") else: _, tmp = tempfile.mkstemp() json.dump(data_dict, open(tmp, "w")) cocoDt = cocoGt.loadRes(tmp) logger.info("Use standard COCOeval.") cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) cocoEval.evaluate() cocoEval.accumulate() redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() info += redirect_string.getvalue() cat_ids = list(cocoGt.cats.keys()) cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)] if self.per_class_AP: AP_table = per_class_AP_table(cocoEval, class_names=cat_names) info += "per class AP:\n" + AP_table + "\n" if self.per_class_AR: AR_table = per_class_AR_table(cocoEval, class_names=cat_names) info += "per class AR:\n" + AR_table + "\n" return cocoEval.stats[0], cocoEval.stats[1], info else: return 0, 0, info class ValTransform: """ Defines the transformations that should be applied to test PIL image for input into the network """ def __init__(self, swap=(2, 0, 1), legacy=False): self.swap = swap self.legacy = legacy # assume input is cv2 img for now def __call__(self, img, res, input_size): img, _ = preproc(img, input_size, self.swap) if self.legacy: img = img[::-1, :, :].copy() img /= 255.0 img -= np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1) img /= np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1) return img, np.zeros((1, 5)) def preproc(img, input_size, swap=(2, 0, 1)): """Preprocess function for preparing input for the network""" if len(img.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(input_size, dtype=np.uint8) * 114 r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(swap) padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) return padded_img, r def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False): """Post-processing part after the prediction heads with NMS""" box_corner = prediction.new(prediction.shape) box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 prediction[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(prediction))] for i, image_pred in enumerate(prediction): # If none are remaining => process next image if not image_pred.size(0): continue # Get score and class with the highest confidence class_conf, class_pred = torch.max(image_pred[:, 5: 5 + num_classes], 1, keepdim=True) conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze() # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1) detections = detections[conf_mask] if not detections.size(0): continue if class_agnostic: nms_out_index = torchvision.ops.nms( detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre, ) else: nms_out_index = torchvision.ops.batched_nms( detections[:, :4], detections[:, 4] * detections[:, 5], detections[:, 6], nms_thre, ) detections = detections[nms_out_index] if output[i] is None: output[i] = detections else: output[i] = torch.cat((output[i], detections)) return output def head_postprocess(outputs, strides=[8, 16, 32]): """Decode outputs from predictions of the detection heads""" hw = [x.shape[-2:] for x in outputs] # [batch, n_anchors_all, 85] outputs = torch.cat([x.flatten(start_dim=2) for x in outputs], dim=2).permute(0, 2, 1) outputs[..., 4:] = outputs[..., 4:].sigmoid() return decode_outputs(outputs, outputs[0].type(), hw, strides) def decode_outputs(outputs, dtype, ori_hw, ori_strides): grids = [] strides = [] for (hsize, wsize), stride in zip(ori_hw, ori_strides): yv, xv = meshgrid([torch.arange(hsize), torch.arange(wsize)]) grid = torch.stack((xv, yv), 2).view(1, -1, 2) grids.append(grid) shape = grid.shape[:2] strides.append(torch.full((*shape, 1), stride)) grids = torch.cat(grids, dim=1).type(dtype) strides = torch.cat(strides, dim=1).type(dtype) outputs[..., :2] = (outputs[..., :2] + grids) * strides outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides return outputs def xyxy2xywh(bboxes): bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] return bboxes def meshgrid(*tensors): _TORCH_VER = [int(x) for x in torch.__version__.split(".")[:2]] if _TORCH_VER >= [1, 10]: return torch.meshgrid(*tensors, indexing="ij") else: return torch.meshgrid(*tensors) def per_class_AR_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AR"], colums=6): """Format the recall of each class""" per_class_AR = {} recalls = coco_eval.eval["recall"] # dimension of recalls: [TxKxAxM] # recall has dims (iou, cls, area range, max dets) assert len(class_names) == recalls.shape[1] for idx, name in enumerate(class_names): recall = recalls[:, idx, 0, -1] recall = recall[recall > -1] ar = np.mean(recall) if recall.size else float("nan") per_class_AR[name] = float(ar * 100) num_cols = min(colums, len(per_class_AR) * len(headers)) result_pair = [x for pair in per_class_AR.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table def per_class_AP_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AP"], colums=6): """Format the precision of each class""" per_class_AP = {} precisions = coco_eval.eval["precision"] # dimension of precisions: [TxRxKxAxM] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") per_class_AP[name] = float(ap * 100) num_cols = min(colums, len(per_class_AP) * len(headers)) result_pair = [x for pair in per_class_AP.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table def get_eval_loader(batch_size, test_size=(640, 640), data_dir='data/COCO', data_num_workers=0, testdev=False, legacy=False): from coco import COCODataset valdataset = COCODataset( data_dir=data_dir, json_file='instances_val2017.json' if not testdev else 'instances_test2017.json', name="val2017" if not testdev else "test2017", img_size=test_size, preproc=ValTransform(legacy=legacy), ) sampler = torch.utils.data.SequentialSampler(valdataset) dataloader_kwargs = { "num_workers": data_num_workers, "pin_memory": True, "sampler": sampler, "batch_size": batch_size } val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs) return val_loader def make_parser(): parser = argparse.ArgumentParser("onnxruntime inference sample") parser.add_argument( "-m", "--model", type=str, default="yolox-s-int8.onnx", help="Input your onnx model.", ) parser.add_argument( "-b", "--batch_size", type=int, default=1, help="Batch size for inference..", ) parser.add_argument( "--input_shape", type=str, default="640,640", help="Specify an input shape for inference.", ) parser.add_argument( "--ipu", action="store_true", help="Use IPU for inference.", ) parser.add_argument( "--provider_config", type=str, default="vaip_config.json", help="Path of the config file for setting provider_options.", ) return parser if __name__ == '__main__': args = make_parser().parse_args() input_shape = tuple(map(int, args.input_shape.split(','))) if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] provider_options = None session = ort.InferenceSession(args.model, providers=providers, provider_options=provider_options) val_loader = get_eval_loader(args.batch_size) evaluator = COCOEvaluator(dataloader=val_loader, img_size=input_shape, confthre=0.01, nmsthre=0.65, num_classes=80, testdev=False) *_, summary = evaluator.evaluate(session) logger.info("\n" + summary)