import math import numpy as np import torch import skimage.measure import skimage.color def calc_psnr(sr, hr, scale, rgb_range, benchmark=False): if sr.size(-2) > hr.size(-2) or sr.size(-1) > hr.size(-1): print("the dimention of sr image is not equal to hr's! ") sr = sr[:,:,:hr.size(-2),:hr.size(-1)] diff = (sr - hr).data.div(rgb_range) if benchmark: shave = scale if diff.size(1) > 1: convert = diff.new(1, 3, 1, 1) convert[0, 0, 0, 0] = 65.738 convert[0, 1, 0, 0] = 129.057 convert[0, 2, 0, 0] = 25.064 diff.mul_(convert).div_(256) diff = diff.sum(dim=1, keepdim=True) else: shave = scale + 6 valid = diff[:, :, shave:-shave, shave:-shave] mse = valid.pow(2).mean() return -10 * math.log10(mse) import numpy as np from scipy import signal def matlab_style_gauss2D(shape=(3,3),sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) Acknowledgement : https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python (Author@ali_m) """ m,n = [(ss-1.)/2. for ss in shape] y,x = np.ogrid[-m:m+1,-n:n+1] h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def calc_ssim(X, Y, scale, rgb_range, dataset=None, sigma=1.5, K1=0.01, K2=0.03, R=255): ''' X : y channel (i.e., luminance) of transformed YCbCr space of X Y : y channel (i.e., luminance) of transformed YCbCr space of Y Please follow the setting of psnr_ssim.m in EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution CVPRW2017). Official Link : https://github.com/LimBee/NTIRE2017/tree/db34606c2844e89317aac8728a2de562ef1f8aba The authors of EDSR use MATLAB's ssim as the evaluation tool, thus this function is the same as ssim.m in MATLAB with C(3) == C(2)/2. ''' gaussian_filter = matlab_style_gauss2D((11, 11), sigma) if True:#dataset and dataset.dataset.benchmark: shave = scale if X.size(1) > 1: gray_coeffs = [65.738, 129.057, 25.064] convert = X.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256 X = X.mul(convert).sum(dim=1) Y = Y.mul(convert).sum(dim=1) else: shave = scale + 6 X = X[..., shave:-shave, shave:-shave].squeeze().cpu().numpy().astype(np.float64) Y = Y[..., shave:-shave, shave:-shave].squeeze().cpu().numpy().astype(np.float64) window = gaussian_filter ux = signal.convolve2d(X, window, mode='same', boundary='symm') uy = signal.convolve2d(Y, window, mode='same', boundary='symm') uxx = signal.convolve2d(X*X, window, mode='same', boundary='symm') uyy = signal.convolve2d(Y*Y, window, mode='same', boundary='symm') uxy = signal.convolve2d(X*Y, window, mode='same', boundary='symm') vx = uxx - ux * ux vy = uyy - uy * uy vxy = uxy - ux * uy C1 = (K1 * R) ** 2 C2 = (K2 * R) ** 2 A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2)) D = B1 * B2 S = (A1 * A2) / D mssim = S.mean() return mssim