--- license: apache-2.0 base_model: moussaKam/barthez-orangesum-abstract tags: - generated_from_trainer metrics: - rouge model-index: - name: barthez-orange-ft results: [] --- # barthez-orange-ft This model is a fine-tuned version of [moussaKam/barthez-orangesum-abstract](https://huggingface.co/moussaKam/barthez-orangesum-abstract) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Rouge1: 0.6719 - Rouge2: 0.6536 - Rougel: 0.6719 - Rougelsum: 0.6722 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 31 | 4.6662 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 1.99 | 62 | 0.6939 | 0.6718 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 2.99 | 93 | 0.2939 | 0.6718 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 3.98 | 124 | 0.2089 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 4.98 | 155 | 0.1880 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 5.98 | 186 | 0.1795 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 6.97 | 217 | 0.1752 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 8.0 | 249 | 0.1732 | 0.6719 | 0.6535 | 0.6718 | 0.6721 | 20.0 | | No log | 9.0 | 280 | 0.1716 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 9.99 | 311 | 0.1707 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 10.99 | 342 | 0.1704 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 11.98 | 373 | 0.1696 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 12.98 | 404 | 0.1698 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 13.98 | 435 | 0.1695 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 14.97 | 466 | 0.1693 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | No log | 16.0 | 498 | 0.1691 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | 0.9743 | 17.0 | 529 | 0.1691 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | 0.9743 | 17.99 | 560 | 0.1690 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | 0.9743 | 18.99 | 591 | 0.1689 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | | 0.9743 | 19.92 | 620 | 0.1689 | 0.6719 | 0.6536 | 0.6719 | 0.6722 | 20.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.13.3