--- license: apache-2.0 datasets: - amaai-lab/MidiCaps tags: - music - text-to-music - symbolic-music ---
# Text2midi: Generating Symbolic Music from Captions [Demo](https://huggingface.co/spaces/amaai-lab/text2midi) | [Model](https://huggingface.co/amaai-lab/text2midi) | [Website and Examples](https://github.com/AMAAI-Lab/text2midi) | [Paper](https://arxiv.org/abs/TBD) | [Dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/amaai-lab/text2midi)
**text2midi** is the first end-to-end model for generating MIDI files from textual descriptions. By leveraging pretrained large language models and a powerful autoregressive transformer decoder, **text2midi** allows users to create symbolic music that aligns with detailed textual prompts, including musical attributes like chords, tempo, and style. 🔥 Live demo available on [HuggingFace Spaces](https://huggingface.co/spaces/amaai-lab/text2midi).
## Quickstart Guide Generate symbolic music from a text prompt: ```python from transformers import T5Tokenizer from model.transformer_model import Transformer from miditok import REMI, TokenizerConfig from pathlib import Path device = 'cuda' if torch.cuda.is_available() else 'cpu' artifact_folder = 'artifacts' tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl") # Load the tokenizer dictionary with open(tokenizer_filepath, "rb") as f: r_tokenizer = pickle.load(f) # Get the vocab size vocab_size = len(r_tokenizer) print("Vocab size: ", vocab_size) model = Transformer(vocab_size, 768, 8, 5000, 18, 1024, False, 8, device=device) model.load_state_dict(torch.load('/text2midi/artifacts/pytorch_model_140.bin', map_location=device)) model.eval() tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") src = "A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality." inputs = tokenizer(src, return_tensors='pt', padding=True, truncation=True) input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0) input_ids = input_ids.to(device) attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) attention_mask = attention_mask.to(device) output = model.generate(input_ids, attention_mask, max_len=2000,temperature = 1.0) output_list = output[0].tolist() generated_midi = r_tokenizer.decode(output_list) generated_midi.dump_midi("output.mid") post_processing("output.mid", "output.mid") ``` ## Installation ```bash git clone https://github.com/AMAAI-Lab/text-2-midi cd text-2-midi pip install -r requirements.txt ``` ## Datasets The MidiCaps dataset is a large-scale dataset of 168k MIDI files paired with rich text captions. These captions contain musical attributes such as key, tempo, style, and mood, making it ideal for text-to-MIDI generation tasks. ## Results of the Listening Study Each question is rated on a Likert scale from 1 (very bad) to 7 (very good). The table shows the average ratings per question for each group of participants. | **Question** | **General Audience (MidiCaps)** | **General Audience (text2midi)** | **Music Experts (MidiCaps)** | **Music Experts (text2midi)** | |---------------------|---------------------------------|-----------------------------------|------------------------------|--------------------------------| | Overall matching | 5.17 | 4.12 | 5.29 | 4.05 | | Genre matching | 5.22 | 4.29 | 5.31 | 4.29 | | Mood matching | 5.24 | 4.10 | 5.44 | 4.26 | | Key matching | 4.72 | 4.24 | 4.63 | 4.05 | | Chord matching | 4.65 | 4.23 | 4.05 | 4.06 | | Tempo matching | 4.72 | 4.48 | 5.15 | 4.90 | ## Objective Evaluations | Metric | text2midi | MidiCaps | MuseCoco | |---------------------|-----------|----------|----------| | CR ↑ | 2.156 | 3.4326 | 2.1288 | | CLAP ↑ | 0.2204 | 0.2593 | 0.2158 | | TB (%) ↑ | 34.03 | - | 21.71 | | TBT (%) ↑ | 66.9 | - | 54.63 | | CK (%) ↑ | 15.36 | - | 13.70 | | CKD (%) ↑ | 15.80 | - | 14.59 | **Note**: CR = Compression ratio CLAP = CLAP score TB = Tempo Bin TBT = Tempo Bin with Tolerance CK = Correct Key CKD = Correct Key with Duplicates ↑ = Higher score is better. ## Training To train text2midi, we recommend using accelerate for multi-GPU support. First, configure accelerate by running: ```bash accelerate config ``` Then, use the following command to start training: ```bash accelerate launch train.py \ --encoder_model="google/flan-t5-large" \ --decoder_model="configs/transformer_decoder_config.json" \ --dataset_name="amaai-lab/MidiCaps" \ --pretrain_dataset="amaai-lab/SymphonyNet" \ --batch_size=16 \ --learning_rate=1e-4 \ --epochs=40 \ ``` ## Citation If you use text2midi in your research, please cite: ``` @inproceedings{bhandari2025text2midi, title={text2midi: Generating Symbolic Music from Captions}, author={Keshav Bhandari and Abhinaba Roy and Kyra Wang and Geeta Puri and Simon Colton and Dorien Herremans}, booktitle={Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)}, year={2025} } ```