import os import shutil import json import torch import torchaudio import numpy as np import logging import warnings import subprocess import math import random import time from pathlib import Path from tqdm import tqdm from PIL import Image from huggingface_hub import snapshot_download from omegaconf import DictConfig import hydra from hydra.utils import to_absolute_path from transformers import Wav2Vec2FeatureExtractor, AutoModel import mir_eval import pretty_midi as pm import gradio as gr from gradio import Markdown from music21 import converter import torchaudio.transforms as T # Custom utility imports from utils import logger from utils.btc_model import BTC_model from utils.transformer_modules import * from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask from utils.hparams import HParams from utils.mir_eval_modules import ( audio_file_to_features, idx2chord, idx2voca_chord, get_audio_paths, get_lab_paths ) from utils.mert import FeatureExtractorMERT from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK # Suppress unnecessary warnings and logs warnings.filterwarnings("ignore") logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) # from gradio import Markdown PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] pitch_num_dic = { 'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5, 'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11 } minor_major_dic = { 'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#' } minor_major_dic2 = { 'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#' } shift_major_dic = { 'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5, 'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11 } shift_minor_dic = { 'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5, 'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11, } flat_to_sharp_mapping = { "Cb": "B", "Db": "C#", "Eb": "D#", "Fb": "E", "Gb": "F#", "Ab": "G#", "Bb": "A#" } segment_duration = 30 resample_rate = 24000 is_split = True def normalize_chord(file_path, key, key_type='major'): with open(file_path, 'r') as f: lines = f.readlines() if key == "None": new_key = "C major" shift = 0 else: #print ("asdas",key) if len(key) == 1: key = key[0].upper() else: key = key[0].upper() + key[1:] if key in minor_major_dic2: key = minor_major_dic2[key] shift = 0 if key_type == "major": new_key = "C major" shift = shift_major_dic[key] else: new_key = "A minor" shift = shift_minor_dic[key] converted_lines = [] for line in lines: if line.strip(): # Skip empty lines parts = line.split() start_time = parts[0] end_time = parts[1] chord = parts[2] # The chord is in the 3rd column if chord == "N": newchordnorm = "N" elif chord == "X": newchordnorm = "X" elif ":" in chord: pitch = chord.split(":")[0] attr = chord.split(":")[1] pnum = pitch_num_dic [pitch] new_idx = (pnum - shift)%12 newchord = PITCH_CLASS[new_idx] newchordnorm = newchord + ":" + attr else: pitch = chord pnum = pitch_num_dic [pitch] new_idx = (pnum - shift)%12 newchord = PITCH_CLASS[new_idx] newchordnorm = newchord converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n") return converted_lines def sanitize_key_signature(key): return key.replace('-', 'b') def resample_waveform(waveform, original_sample_rate, target_sample_rate): if original_sample_rate != target_sample_rate: resampler = T.Resample(original_sample_rate, target_sample_rate) return resampler(waveform), target_sample_rate return waveform, original_sample_rate def split_audio(waveform, sample_rate): segment_samples = segment_duration * sample_rate total_samples = waveform.size(0) segments = [] for start in range(0, total_samples, segment_samples): end = start + segment_samples if end <= total_samples: segment = waveform[start:end] segments.append(segment) # In case audio length is shorter than segment length. if len(segments) == 0: segment = waveform segments.append(segment) return segments class Music2emo: def __init__( self, name="amaai-lab/music2emo", device="cuda:0", cache_dir=None, local_files_only=False, ): # use_cuda = torch.cuda.is_available() # self.device = torch.device("cuda" if use_cuda else "cpu") model_weights = "saved_models/J_all.ckpt" self.device = device self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate) self.model_weights = model_weights self.music2emo_model = FeedforwardModelMTAttnCK( input_size= 768 * 2, output_size_classification=56, output_size_regression=2 ) checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False) state_dict = checkpoint["state_dict"] # Adjust the keys in the state_dict state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()} # Filter state_dict to match model's keys model_keys = set(self.music2emo_model.state_dict().keys()) filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys} # Load the filtered state_dict and set the model to evaluation mode self.music2emo_model.load_state_dict(filtered_state_dict) self.music2emo_model.to(self.device) self.music2emo_model.eval() def predict(self, audio, threshold = 0.5): feature_dir = Path("./inference/temp_out") output_dir = Path("./inference/output") if feature_dir.exists(): shutil.rmtree(str(feature_dir)) if output_dir.exists(): shutil.rmtree(str(output_dir)) feature_dir.mkdir(parents=True) output_dir.mkdir(parents=True) warnings.filterwarnings('ignore') logger.logging_verbosity(1) mert_dir = feature_dir / "mert" mert_dir.mkdir(parents=True) waveform, sample_rate = torchaudio.load(audio) if waveform.shape[0] > 1: waveform = waveform.mean(dim=0).unsqueeze(0) waveform = waveform.squeeze() waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate) if is_split: segments = split_audio(waveform, sample_rate) for i, segment in enumerate(segments): segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy") self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path) else: segment_save_path = os.path.join(mert_dir, f"segment_0.npy") self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path) embeddings = [] layers_to_extract = [5,6] segment_embeddings = [] for filename in sorted(os.listdir(mert_dir)): # Sort files to ensure sequential order file_path = os.path.join(mert_dir, filename) if os.path.isfile(file_path) and filename.endswith('.npy'): segment = np.load(file_path) concatenated_features = np.concatenate( [segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1 ) concatenated_features = np.squeeze(concatenated_features) # Shape: 768 * 2 = 1536 segment_embeddings.append(concatenated_features) segment_embeddings = np.array(segment_embeddings) if len(segment_embeddings) > 0: final_embedding_mert = np.mean(segment_embeddings, axis=0) else: final_embedding_mert = np.zeros((1536,)) final_embedding_mert = torch.from_numpy(final_embedding_mert) final_embedding_mert.to(self.device) # --- Chord feature extract --- config = HParams.load("./inference/data/run_config.yaml") config.feature['large_voca'] = True config.model['num_chords'] = 170 model_file = './inference/data/btc_model_large_voca.pt' idx_to_chord = idx2voca_chord() model = BTC_model(config=config.model).to(self.device) if os.path.isfile(model_file): checkpoint = torch.load(model_file) mean = checkpoint['mean'] std = checkpoint['std'] model.load_state_dict(checkpoint['model']) audio_path = audio audio_id = audio_path.split("/")[-1][:-4] try: feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, config) except: logger.info("audio file failed to load : %s" % audio_path) assert(False) logger.info("audio file loaded and feature computation success : %s" % audio_path) feature = feature.T feature = (feature - mean) / std time_unit = feature_per_second n_timestep = config.model['timestep'] num_pad = n_timestep - (feature.shape[0] % n_timestep) feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0) num_instance = feature.shape[0] // n_timestep start_time = 0.0 lines = [] with torch.no_grad(): model.eval() feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device) for t in range(num_instance): self_attn_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :]) prediction, _ = model.output_layer(self_attn_output) prediction = prediction.squeeze() for i in range(n_timestep): if t == 0 and i == 0: prev_chord = prediction[i].item() continue if prediction[i].item() != prev_chord: lines.append( '%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord])) start_time = time_unit * (n_timestep * t + i) prev_chord = prediction[i].item() if t == num_instance - 1 and i + num_pad == n_timestep: if start_time != time_unit * (n_timestep * t + i): lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord])) break save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab') with open(save_path, 'w') as f: for line in lines: f.write(line) # logger.info("label file saved : %s" % save_path) # lab file to midi file starts, ends, pitchs = list(), list(), list() intervals, chords = mir_eval.io.load_labeled_intervals(save_path) for p in range(12): for i, (interval, chord) in enumerate(zip(intervals, chords)): root_num, relative_bitmap, _ = mir_eval.chord.encode(chord) tmp_label = mir_eval.chord.rotate_bitmap_to_root(relative_bitmap, root_num)[p] if i == 0: start_time = interval[0] label = tmp_label continue if tmp_label != label: if label == 1.0: starts.append(start_time), ends.append(interval[0]), pitchs.append(p + 48) start_time = interval[0] label = tmp_label if i == (len(intervals) - 1): if label == 1.0: starts.append(start_time), ends.append(interval[1]), pitchs.append(p + 48) midi = pm.PrettyMIDI() instrument = pm.Instrument(program=0) for start, end, pitch in zip(starts, ends, pitchs): pm_note = pm.Note(velocity=120, pitch=pitch, start=start, end=end) instrument.notes.append(pm_note) midi.instruments.append(instrument) midi.write(save_path.replace('.lab', '.midi')) tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"] mode_signatures = ["major", "minor"] # Major and minor modes tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)} mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)} idx_to_tonic = {idx: tonic for tonic, idx in tonic_to_idx.items()} idx_to_mode = {idx: mode for mode, idx in mode_to_idx.items()} with open('inference/data/chord.json', 'r') as f: chord_to_idx = json.load(f) with open('inference/data/chord_inv.json', 'r') as f: idx_to_chord = json.load(f) idx_to_chord = {int(k): v for k, v in idx_to_chord.items()} # Ensure keys are ints with open('inference/data/chord_root.json') as json_file: chordRootDic = json.load(json_file) with open('inference/data/chord_attr.json') as json_file: chordAttrDic = json.load(json_file) try: midi_file = converter.parse(save_path.replace('.lab', '.midi')) key_signature = str(midi_file.analyze('key')) except Exception as e: key_signature = "None" key_parts = key_signature.split() key_signature = sanitize_key_signature(key_parts[0]) # Sanitize key signature key_type = key_parts[1] if len(key_parts) > 1 else 'major' # --- Key feature (Tonic and Mode separation) --- if key_signature == "None": mode = "major" else: mode = key_signature.split()[-1] encoded_mode = mode_to_idx.get(mode, 0) mode_tensor = torch.tensor([encoded_mode], dtype=torch.long).to(self.device) converted_lines = normalize_chord(save_path, key_signature, key_type) lab_norm_path = save_path[:-4] + "_norm.lab" # Write the converted lines to the new file with open(lab_norm_path, 'w') as f: f.writelines(converted_lines) chords = [] if not os.path.exists(lab_norm_path): chords.append((float(0), float(0), "N")) else: with open(lab_norm_path, 'r') as file: for line in file: start, end, chord = line.strip().split() chords.append((float(start), float(end), chord)) encoded = [] encoded_root= [] encoded_attr=[] durations = [] for start, end, chord in chords: chord_arr = chord.split(":") if len(chord_arr) == 1: chordRootID = chordRootDic[chord_arr[0]] if chord_arr[0] == "N" or chord_arr[0] == "X": chordAttrID = 0 else: chordAttrID = 1 elif len(chord_arr) == 2: chordRootID = chordRootDic[chord_arr[0]] chordAttrID = chordAttrDic[chord_arr[1]] encoded_root.append(chordRootID) encoded_attr.append(chordAttrID) if chord in chord_to_idx: encoded.append(chord_to_idx[chord]) else: print(f"Warning: Chord {chord} not found in chord.json. Skipping.") durations.append(end - start) # Compute duration encoded_chords = np.array(encoded) encoded_chords_root = np.array(encoded_root) encoded_chords_attr = np.array(encoded_attr) # Maximum sequence length for chords max_sequence_length = 100 # Define this globally or as a parameter # Truncate or pad chord sequences if len(encoded_chords) > max_sequence_length: # Truncate to max length encoded_chords = encoded_chords[:max_sequence_length] encoded_chords_root = encoded_chords_root[:max_sequence_length] encoded_chords_attr = encoded_chords_attr[:max_sequence_length] else: # Pad with zeros (padding value for chords) padding = [0] * (max_sequence_length - len(encoded_chords)) encoded_chords = np.concatenate([encoded_chords, padding]) encoded_chords_root = np.concatenate([encoded_chords_root, padding]) encoded_chords_attr = np.concatenate([encoded_chords_attr, padding]) # Convert to tensor chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device) chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device) chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device) model_input_dic = { "x_mert": final_embedding_mert.unsqueeze(0), "x_chord": chords_tensor.unsqueeze(0), "x_chord_root": chords_root_tensor.unsqueeze(0), "x_chord_attr": chords_attr_tensor.unsqueeze(0), "x_key": mode_tensor.unsqueeze(0) } model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()} classification_output, regression_output = self.music2emo_model(model_input_dic) probs = torch.sigmoid(classification_output) tag_list = np.load ( "./inference/data/tag_list.npy") tag_list = tag_list[127:] mood_list = [t.replace("mood/theme---", "") for t in tag_list] threshold = threshold predicted_moods = [mood_list[i] for i, p in enumerate(probs.squeeze().tolist()) if p > threshold] valence, arousal = regression_output.squeeze().tolist() model_output_dic = { "valence": valence, "arousal": arousal, "predicted_moods": predicted_moods } return model_output_dic # Initialize Mustango if torch.cuda.is_available(): music2emo = Music2emo() else: music2emo = Music2emo(device="cpu") def format_prediction(model_output_dic): """Format the model output in a more readable and attractive format""" valence = model_output_dic["valence"] arousal = model_output_dic["arousal"] moods = model_output_dic["predicted_moods"] # Create a formatted string with emojis and proper formatting output_text = """ 🎵 **Music Emotion Recognition Results** 🎵 -------------------------------------------------- 🎭 **Predicted Mood Tags:** {} 💖 **Valence:** {:.2f} (Scale: 1-9) ⚡ **Arousal:** {:.2f} (Scale: 1-9) -------------------------------------------------- """.format( ', '.join(moods) if moods else 'None', valence, arousal ) return output_text title = "Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models" description_text = """
Upload an audio file to analyze its emotional characteristics using Music2Emo. The model will predict: • Mood tags describing the emotional content • Valence score (1-9 scale, representing emotional positivity) • Arousal score (1-9 scale, representing emotional intensity)
""" css = """ #output-text { font-family: monospace; white-space: pre-wrap; font-size: 16px; background-color: #333333; padding: 20px; border-radius: 10px; margin: 10px 0; } .gradio-container { font-family: 'Inter', -apple-system, system-ui, sans-serif; } .gr-button { color: white; background: #1565c0; border-radius: 100vh; } """ # Initialize Music2Emo if torch.cuda.is_available(): music2emo = Music2emo() else: music2emo = Music2emo(device="cpu") with gr.Blocks(css=css) as demo: gr.HTML(f"
# Predict emotion using Music2Emo by providing an input audio.
#
This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models
# Read our paper.
#
# Predict emotion using Music2Emo by providing an input audio.
#
This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models
# Read our paper.
#