--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Distil-Whisper Small zh-HK - Alvin results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 yue type: mozilla-foundation/common_voice_16_0 config: yue split: test args: yue metrics: - name: Normalized CER type: cer value: 9.7 --- # Distil-Whisper Small zh-HK - Alvin - This model is a distilled version of [alvanlii/whisper-small-cantonese](https://huggingface.co/alvanlii/whisper-small-cantonese) on the Cantonese language. - Achieves a 9.7 CER (without punctuations), 11.59 CER (with punctuations) on Common Voice 16.0. - Has 3 decoder layers instead of regular 12 of the Whisper small model. - Uses ~2GB of GPU VRAM ## Training and evaluation data For training, - CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906. - Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf - Common Voice yue and zh-HK train sets For evaluation, Common Voice 16.0 yue Test set is used. ## Comparisons to Whisper Small ||`alvanlii/distil-whisper-small-cantonese`|`alvanlii/whisper-small-cantonese`| |--|--|--| |CER (lower is better)|0.116|0.107| |GPU Inference time (sdpa) [s/sample]|0.039|0.055| |GPU Inference (regular) [s/sample]|0.041|0.308| |CPU Inference [s/sample]|1.7|2.57| - inference time is calculated by taking the average inference time for the CV16 yue test set ## Using the Model ``` import librosa import torch from transformers import WhisperForConditionalGeneration, WhisperProcessor y, sr = librosa.load('audio.mp3', sr=16000) MODEL_NAME = "alvanlii/distil-whisper-small-cantonese" processor = WhisperProcessor.from_pretrained(MODEL_NAME) model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME) model.config.forced_decoder_ids = None model.config.suppress_tokens = [] model.config.use_cache = False processed_in = processor(y, sampling_rate=sr, return_tensors="pt") gout = model.generate( input_features=processed_in.input_features, output_scores=True, return_dict_in_generate=True ) transcription = processor.batch_decode(gout.sequences, skip_special_tokens=True)[0] print(transcription) ``` - Alternatively, you can use huggingface pipelines ``` from transformers import pipeline MODEL_NAME = "alvanlii/distil-whisper-small-cantonese" lang = "zh" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") text = pipe(file)["text"] ```