--- library_name: transformers license: apache-2.0 language: - en tags: - conversational - math - distillation - mistral --- This is an experimental model. The idea is : - Calculate the difference in weights between a donor model(meta-math/MetaMath-Mistral-7B) and the base model(mistralai/Mistral-7B-v0.1). This difference represents how much each parameter needs to be adjusted to go from the base state to the donor state. ``` vector = math_model.state_dict()[k] - base_model.state_dict()[k] ``` - Vector retrieved from the result of step one, is added to third model(lex-hue/Delexa-7b). This should transfer **math** *skills* to our third model. ``` vector = math_model.state_dict()[k] new_v = v + vector.to(v.device) v.copy_(new_v) ``` ### Example: ``` from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "aloobun/CosmicNoodle-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") prompt = "For the natural number A, the quotient of A divided by 9 is 6 and the remainder is 5. What is the value of A?\n" input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") tokens = model.generate(input_ids.to(device=model.device), max_new_tokens=128, temperature=0.99, top_p=0.95, do_sample=True) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ```